Synthesis and characterization of carbon-coated Fe3O4 nanoflakes as anode material for lithium-ion batteries

被引:27
作者
Wan, Yun-hai [1 ]
Shi, Xiao-qin [1 ]
Xia, Hui [1 ,2 ]
Xie, Jian [3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Herbert Gleiter Inst Nanosci, Nanjing 210094, Jiangsu, Peoples R China
[3] Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Composites; Chemical synthesis; Electrochemical measurements; Electrochemical properties; PERFORMANCE; NANOCOMPOSITE; FABRICATION; NANORODS; METAL;
D O I
10.1016/j.materresbull.2013.08.046
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The carbon-coated Fe3O4 nanoflakes were synthesized by partial reduction of monodispersed hematite (Fe2O3) nanoflakes with carbon coating. The carbon-coated Fe3O4 nanoflakes were characterized by X-ray diffraction, Raman spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and galvanostatic charge/discharge measurements. It has been demonstrated that Fe2O3 can be completely converted to Fe3O4 during the reduction process and carbon can be successfully coated on the surface of Fe3O4 nanoflakes, forming a conductive matrix. As anode material for lithium-ion batteries, the carbon-coated Fe3O4 nanoflakes exhibit a large reversible capacity up to 740 mAh g(-1) with significantly improved cycling stability and rate capability compared to the bare Fe2O3 nanoflakes. The superior electrochemical performance of the carbon-coated Fe3O4 nanoflakes can be attributed to the synthetic effects between small particle size and highly conductive carbon matrix. (C) 2013 Elsevier Ltd. All rights. reserved.
引用
收藏
页码:4791 / 4796
页数:6
相关论文
共 35 条
[11]   Shape-Controlled Synthesis of Single-Crystalline Fe2O3 Hollow Nanocrystals and Their Tunable Optical Properties [J].
Fan, H. M. ;
You, G. J. ;
Li, Y. ;
Zheng, Z. ;
Tan, H. R. ;
Shen, Z. X. ;
Tang, S. H. ;
Feng, Y. P. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (22) :9928-9935
[12]   A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: case study of eco-friendly Fe3O4 [J].
Hariharan, Srirama ;
Saravanan, Kuppan ;
Ramar, Vishwanathan ;
Balaya, Palani .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (08) :2945-2953
[13]   Solvent-assisted molten salt process: A new route to synthesise α-Fe2O3/C nanocomposite and its electrochemical performance in lithium-ion batteries [J].
Hassan, Mohd Faiz ;
Rahman, M. M. ;
Guo, Zai Ping ;
Chen, Zhi Xin ;
Liu, Hua Kun .
ELECTROCHIMICA ACTA, 2010, 55 (17) :5006-5013
[14]   Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium ion batteries [J].
He, Yang ;
Huang, Ling ;
Cai, Jin-Shu ;
Zheng, Xiao-Mei ;
Sun, Shi-Gang .
ELECTROCHIMICA ACTA, 2010, 55 (03) :1140-1144
[15]   A magnetite nanocrystal/graphene composite as high performance anode for lithium-ion batteries [J].
Huang, Xiaodan ;
Zhou, Xufeng ;
Qian, Kun ;
Zhao, Dongyuan ;
Liu, Zhaoping ;
Yu, Chengzhong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 514 :76-80
[16]   Facile synthesis of hierarchically structured Fe3O4/carbon micro-flowers and their application to lithium-ion battery anodes [J].
Jin, Shuangling ;
Deng, Honggui ;
Long, Donghui ;
Liu, Xiaojun ;
Zhan, Liang ;
Liang, Xiaoyi ;
Qiao, Wenming ;
Ling, Licheng .
JOURNAL OF POWER SOURCES, 2011, 196 (08) :3887-3893
[17]   Solution-phase synthesis of single-crystalline Fe3O4 magnetic nanobelts [J].
Li, Lili ;
Chu, Ying ;
Liu, Yang ;
Wang, Dan .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 472 (1-2) :271-275
[18]   Enhanced cycling performance of Fe3O4-graphene nanocomposite as an anode material for lithium-ion batteries [J].
Lian, Peichao ;
Zhu, Xuefeng ;
Xiang, Hongfa ;
Li, Zhong ;
Yang, Weishen ;
Wang, Haihui .
ELECTROCHIMICA ACTA, 2010, 56 (02) :834-840
[19]   Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries [J].
Liu, Hao ;
Wang, Guoxiu ;
Wang, Jiazhao ;
Wexler, David .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (12) :1879-1882
[20]   Iron Oxide-Based Nanotube Arrays Derived from Sacrificial Template-Accelerated Hydrolysis: Large-Area Design and Reversible Lithium Storage [J].
Liu, Jinping ;
Li, Yuanyuan ;
Fan, Hongjin ;
Zhu, Zhihong ;
Jiang, Jian ;
Ding, Ruimin ;
Hu, Yingying ;
Huang, Xintang .
CHEMISTRY OF MATERIALS, 2010, 22 (01) :212-217