Synthesis and characterization of carbon-coated Fe3O4 nanoflakes as anode material for lithium-ion batteries

被引:26
作者
Wan, Yun-hai [1 ]
Shi, Xiao-qin [1 ]
Xia, Hui [1 ,2 ]
Xie, Jian [3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Herbert Gleiter Inst Nanosci, Nanjing 210094, Jiangsu, Peoples R China
[3] Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Composites; Chemical synthesis; Electrochemical measurements; Electrochemical properties; PERFORMANCE; NANOCOMPOSITE; FABRICATION; NANORODS; METAL;
D O I
10.1016/j.materresbull.2013.08.046
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The carbon-coated Fe3O4 nanoflakes were synthesized by partial reduction of monodispersed hematite (Fe2O3) nanoflakes with carbon coating. The carbon-coated Fe3O4 nanoflakes were characterized by X-ray diffraction, Raman spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and galvanostatic charge/discharge measurements. It has been demonstrated that Fe2O3 can be completely converted to Fe3O4 during the reduction process and carbon can be successfully coated on the surface of Fe3O4 nanoflakes, forming a conductive matrix. As anode material for lithium-ion batteries, the carbon-coated Fe3O4 nanoflakes exhibit a large reversible capacity up to 740 mAh g(-1) with significantly improved cycling stability and rate capability compared to the bare Fe2O3 nanoflakes. The superior electrochemical performance of the carbon-coated Fe3O4 nanoflakes can be attributed to the synthetic effects between small particle size and highly conductive carbon matrix. (C) 2013 Elsevier Ltd. All rights. reserved.
引用
收藏
页码:4791 / 4796
页数:6
相关论文
共 35 条
[1]   Process Map for the Hydrothermal Synthesis of α-Fe2O3 Nanorods [J].
Almeida, Trevor P. ;
Fay, Mike ;
Zhu, Yanqiu ;
Brown, Paul D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (43) :18689-18698
[2]   Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity [J].
Balaya, P ;
Li, H ;
Kienle, L ;
Maier, J .
ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (08) :621-625
[3]   Magnetism of nanophase metal and metal alloy particles formed in ordered phases [J].
Carpenter, EE ;
Seip, CT ;
O'Connor, CJ .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (08) :5184-5186
[4]   SnO2 Nanoparticles with Controlled Carbon Nanocoating as High-Capacity Anode Materials for Lithium-Ion Batteries [J].
Chen, Jun Song ;
Cheah, Yan Ling ;
Chen, Yuan Ting ;
Jayaprakash, N. ;
Madhavi, Srinivasan ;
Yang, Yan Hui ;
Lou, Xiong Wen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (47) :20504-20508
[5]   Synthesis of porous hollow Fe3O4 beads and their applications in lithium ion batteries [J].
Chen, Yu ;
Xia, Hui ;
Lu, Li ;
Xue, Junmin .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (11) :5006-5012
[6]   Porous Fe3O4/Carbon Core/Shell Nanorods: Synthesis and Electromagnetic Properties [J].
Chen, Yu-Jin ;
Xiao, Gang ;
Wang, Tie-Shi ;
Ouyang, Qiu-Yun ;
Qi, Li-Hong ;
Ma, Yang ;
Gao, Peng ;
Zhu, Chun-Ling ;
Cao, Mao-Sheng ;
Jin, Hai-Bo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (28) :13603-13608
[7]   Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition [J].
Chernyshova, I. V. ;
Hochella, M. F., Jr. ;
Madden, A. S. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (14) :1736-1750
[8]  
deFaria DLA, 1997, J RAMAN SPECTROSC, V28, P873, DOI 10.1002/(SICI)1097-4555(199711)28:11<873::AID-JRS177>3.0.CO
[9]  
2-B
[10]   CORE/SHELL STRUCTURED NANOCOMPOSITES FOR ELECTRODE MATERIALS OF LITHIUM ION BATTERIES [J].
Duan, Jiyuan ;
Wei, Biwen ;
Yang, Rongjing ;
Pan, Jiazhen .
FUNCTIONAL MATERIALS LETTERS, 2010, 3 (03) :193-195