Variational approach to bifurcation from infinity for nonlinear elliptic problems

被引:2
作者
Byeon, Jaeyoung [1 ]
Lee, Youngae [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Math, Pohang 790784, Kyungbuk, South Korea
基金
新加坡国家研究基金会;
关键词
LEAST-ENERGY SOLUTIONS; SCHRODINGER-EQUATIONS; STANDING WAVES; SEMICLASSICAL STATES; DIRICHLET PROBLEMS; FIELD-EQUATIONS; EXISTENCE;
D O I
10.1017/S0308210511000801
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any N >= 1 and sufficiently small epsilon > 0, we find a positive solution of a nonlinear elliptic equation Delta u = epsilon(2)(V(x)u - f(u)), x is an element of R-N, when lim(vertical bar x vertical bar ->infinity) V(x) = m > 0 and some optimal conditions on f are satisfied. Furthermore, we investigate the asymptotic behaviour of the solution as epsilon -> 0.
引用
收藏
页码:269 / 301
页数:33
相关论文
共 36 条