POLYNOMIAL IDENTITIES FOR TANGENT ALGEBRAS OF MONOASSOCIATIVE LOOPS

被引:4
作者
Bremner, Murray R. [1 ]
Madariaga, Sara [2 ]
机构
[1] Univ Saskatchewan, Dept Math & Stat, Saskatoon, SK S7N 5E6, Canada
[2] Univ La Rioja, Dept Matemat & Comp, Logrono, Spain
基金
加拿大自然科学与工程研究理事会;
关键词
Computer algebra; Monoassociative loops; Multilinear operations; Polynomial identities; Power-associative algebras; Representation theory of the symmetric group; Sabinin algebras; Primary; 17A05; Secondary; 17A30; 17A42; 17A50; 17D10; 20N05; 53A60; ENVELOPE;
D O I
10.1080/00927872.2012.709567
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce degree n Sabinin algebras, which are defined by the polynomial identities up to degree n in a Sabinin algebra. Degree 4 Sabinin algebras can be characterized by the polynomial identities satisfied by the commutator, associator, and two quaternators in the free nonassociative algebra. We consider these operations in a free power associative algebra and show that one of the quaternators is redundant. The resulting algebras provide the natural structure on the tangent space at the identity element of an analytic loop for which all local loops satisfy monoassociativity, a(2)aaa(2). These algebras are the next step beyond Lie, Malcev, and Bol algebras. We also present an identity of degree 5 which is satisfied by these three operations but which is not implied by the identities of lower degree.
引用
收藏
页码:203 / 227
页数:25
相关论文
共 26 条
[1]  
ACZEL J, 1965, ADV MATH, V1, P383
[2]  
Akivis M., 2000, COMMENT MATH U CAROL, V41, P205
[3]  
Akivis M. A., 1975, PROBLEMS GEOMETRY, V7, P69
[4]  
Akivis M.A., 1992, Geometry of Algebra of Multi Dimensional Three-Webs
[5]  
Akivis M. A., 1989, SOV MATH, V33, P13
[6]   Local algebras of a differential quasigroup [J].
Akivis, MA ;
Goldberg, VV .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 43 (02) :207-226
[7]  
Albert A.A, 1948, Summa Bras. Math., V2, P21
[8]  
Bremner M.R, 2011, LATTICE BASIS REDUCT
[9]   Classification of trilinear operations [J].
Bremner, Murray R. ;
Peresi, Luiz A. .
COMMUNICATIONS IN ALGEBRA, 2007, 35 (09) :2932-2959
[10]  
Bremner MR, 2010, COMMENT MATH UNIV CA, V51, P157