The two-loop sunrise graph with arbitrary masses

被引:101
作者
Adams, Luise [1 ]
Bogner, Christian [2 ]
Weinzierl, Stefan [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, Inst Phys, D-55099 Mainz, Germany
[2] Humboldt Univ, Inst Phys, D-10099 Berlin, Germany
关键词
THRESHOLD EXPANSION; DIFFERENTIAL-EQUATIONS; NUMERICAL EVALUATION; MASTER INTEGRALS; FEYNMAN DIAGRAMS; SPACE; SUNSET; CONNECTION; VALUES;
D O I
10.1063/1.4804996
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss the analytical solution of the two-loop sunrise graph with arbitrary non-zero masses in two space-time dimensions. The analytical result is obtained by solving a second-order differential equation. The solution involves elliptic integrals and in particular the solutions of the corresponding homogeneous differential equation are given by periods of an elliptic curve. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:18
相关论文
共 58 条
  • [41] Müller-Stach S, 2012, COMMUN NUMBER THEORY, V6, P203
  • [42] Muller-Stach S., ARXIV11124360
  • [43] Muller-Stach Stefan, 2012, ARXIV12124389
  • [44] Onishchenko A., ARXIVHEPPH0207091
  • [45] Special case of sunset:: Reduction and ε expansion
    Onishchenko, AI
    Veretin, OL
    [J]. PHYSICS OF ATOMIC NUCLEI, 2005, 68 (08) : 1405 - 1413
  • [46] Paulos M. F., ARXIV12036362
  • [47] Mellin amplitudes for dual conformal integrals
    Paulos, Miguel F.
    Spradlin, Marcus
    Volovich, Anastasia
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (08):
  • [48] Pivovarov A., ARXIVHEPPH0003115
  • [49] Pivovarov A. A., ARXIVHEPPH0506286
  • [50] Precise numerical evaluation of the two loop sunrise graph Master Integrals in the equal mass case
    Pozzorini, S.
    Remiddi, E.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2006, 175 (05) : 381 - 387