Light absorption mechanism in organic solar cells with hexagonal lattice nanohole aluminum transparent electrodes

被引:5
作者
Du, Qing Guo [1 ,2 ]
Ren, Hengjiang [3 ]
Wu, Lin [1 ]
Bai, Ping [1 ]
Png, Ching Eng [1 ]
Sun, Xiao Wei [4 ]
Kam, Chan Hin [4 ]
de Sterke, C. Martijn [5 ]
机构
[1] Inst High Performance Comp, Singapore 138632, Singapore
[2] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
[3] CALTECH, Elect Engn, Pasadena, CA 91125 USA
[4] Nanyang Technol Univ, LUMINOUS Ctr Excellence Semicond Lighting & Displ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[5] Univ Sydney, Sch Phys, IPOS, Ctr Ultrahigh Bandwidth Devices Opt Syst CUDOS, Sydney, NSW 2006, Australia
关键词
transparent electrode; organic solar cell; waveguide mode; ENHANCEMENT; FILMS;
D O I
10.1088/2040-8978/17/8/085901
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present the design of an organic solar cell (OSC), integrated with nanohole patterned aluminum electrode with hexagonal lattice and analyze the light absorption mechanism in detail. The periodic nanohole pattern in the electrode excites a resonant waveguide mode which localizes the electromagnetic fields into the active layer at the long wavelengths where the active material usually has a relatively low absorption coefficient. The calculated maximum achievable photocurrent density indicates that OSC integrated with nanohole patterned aluminum electrode shows slightly better performance compare to that of the conventional OSC integrated with an indium tin oxide electrode. Moreover, the waveguide mode can be tuned by varying the period of the nanohole array and the thickness of nanocrystalline zinc oxide for different kinds of cell structures. By combining with other strategies to enhance the absorption at the short wavelength, our finding provides a promising way to further improve the efficiency of the OSCs.
引用
收藏
页数:5
相关论文
共 35 条
[1]   Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices [J].
Catrysse, Peter B. ;
Fan, Shanhui .
NANO LETTERS, 2010, 10 (08) :2944-2949
[2]  
Daniel L., 2013, NANOTECHNOLOGY, V24, DOI DOI 10.1088/0957-4484/24/45/452001
[3]   A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared [J].
Du, Qing Guo ;
Sathiyamoorthy, Krishnan ;
Zhang, Li Ping ;
Demir, Hilmi Volkan ;
Kam, Chan Hin ;
Sun, Xiao Wei .
APPLIED PHYSICS LETTERS, 2012, 101 (18)
[4]   Uniform and Ordered Copper Nanomeshes by Microsphere Lithography for Transparent Electrodes [J].
Gao, Tongchuan ;
Wang, Baomin ;
Ding, Bo ;
Lee, Jung-kun ;
Leu, Paul W. .
NANO LETTERS, 2014, 14 (04) :2105-2110
[5]   High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid [J].
Ghosh, D. S. ;
Chen, T. L. ;
Pruneri, V. .
APPLIED PHYSICS LETTERS, 2010, 96 (04)
[6]   Widely transparent electrodes based on ultrathin metals [J].
Ghosh, D. S. ;
Martinez, L. ;
Giurgola, S. ;
Vergani, P. ;
Pruneri, V. .
OPTICS LETTERS, 2009, 34 (03) :325-327
[7]   Copper Nanowires as Fully Transparent Conductive Electrodes [J].
Guo, Huizhang ;
Lin, Na ;
Chen, Yuanzhi ;
Wang, Zhenwei ;
Xie, Qingshui ;
Zheng, Tongchang ;
Gao, Na ;
Li, Shuping ;
Kang, Junyong ;
Cai, Duanjun ;
Peng, Dong-Liang .
SCIENTIFIC REPORTS, 2013, 3
[8]   Fully indium-free flexible Ag nanowires/ZnO:F composite transparent conductive electrodes with high haze [J].
Han, Jun ;
Yuan, Shuai ;
Liu, Lina ;
Qiu, Xiaofeng ;
Gong, Haibo ;
Yang, Xiaopeng ;
Li, Cuncheng ;
Hao, Yufeng ;
Cao, Bingqiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (10) :5375-5384
[9]   A Tough and High-Performance Transparent Electrode from a Scalable and Transfer-Free Method [J].
He, Tianda ;
Xie, Aozhen ;
Reneker, Darrell H. ;
Zhu, Yu .
ACS NANO, 2014, 8 (05) :4782-4789
[10]   Electrolessly Deposited Electrospun Metal Nanowire Transparent Electrodes [J].
Hsu, Po-Chun ;
Kong, Desheng ;
Wang, Shuang ;
Wang, Haotian ;
Welch, Alex J. ;
Wu, Hui ;
Cui, Yi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (30) :10593-10596