Corrector estimates for the homogenization of a locally periodic medium with areas of low and high diffusivity

被引:21
作者
Muntean, A. [1 ,2 ]
Van Noorden, T. L. [3 ]
机构
[1] Tech Univ Eindhoven, CASA Ctr Anal Sci Comp & Applicat, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[2] Tech Univ Eindhoven, Inst Complex Mol Syst, NL-5600 MB Eindhoven, Netherlands
[3] Univ Erlangen Nurnberg, Dept Math, Chair Appl Math 1, D-91058 Erlangen, Germany
关键词
Corrector estimates; Transmission condition; Homogenization; Micro-macro transport; Reaction-diffusion system in heterogeneous materials; STOKES EQUATIONS; CONVERGENCE; MODEL;
D O I
10.1017/S0956792513000090
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an upper bound for the convergence rate of the homogenization limit epsilon -> 0 for a linear transmission problem for a advection-diffusion(-reaction) system posed in areas with low and high diffusivity, where epsilon is a suitable scale parameter. In this way we rigorously justify the formal homogenization asymptotics obtained in [37] (van Noorden, T. and Muntean, A. (2011) Homogenization of a locally-periodic medium with areas of low and high diffusivity. Eur. J. Appl. Math. 22, 493-516). We do this by providing a corrector estimate. The main ingredients for the proof of the correctors include integral estimates for rapidly oscillating functions with prescribed average, properties of the macroscopic reconstruction operators, energy bounds, and extra two-scale regularity estimates. The whole procedure essentially relies on a good understanding of the analysis of the limit two-scale problem.
引用
收藏
页码:657 / 677
页数:21
相关论文
共 37 条
  • [1] [Anonymous], 1995, Adv Math Sci Appl
  • [2] [Anonymous], 2011, Principles of Multiscale Modeling
  • [3] Avellandeda M., 1996, LECT APPL MATH, V31, P241
  • [4] Homogenization of a transmission problem in solid mechanics
    Baffico, L
    Conca, C
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 233 (02) : 659 - 680
  • [5] HOMOGENIZATION AND CORRECTOR THEORY FOR LINEAR TRANSPORT IN RANDOM MEDIA
    Bal, Guillaume
    Jing, Wenjia
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (04) : 1311 - 1343
  • [6] Homogenization of the Stokes equations with a random potential
    Belyaev, AY
    Efendiev, YR
    [J]. MATHEMATICAL NOTES, 1996, 59 (3-4) : 361 - 372
  • [7] Bensoussan A., 1978, Asymptotic analysis for periodic structures
  • [8] Bourgeat A, 2003, ASYMPTOTIC ANAL, V34, P311
  • [9] Capriz G., 1998, NONLINEAR ANAL CONTI, P27, DOI [10.1007/978-1-4612-2196-8_3, DOI 10.1007/978-1-4612-2196-8_3]
  • [10] Chechkin G., 2007, HOMOGENIZATION METHO, V234