Iron(II) molybdate (FeMoO4) nanorods as a high-performance anode for lithium ion batteries: structural and chemical evolution upon cycling

被引:142
|
作者
Zhang, Zhenyu [1 ]
Li, Wenyue [2 ]
Ng, Tsz-Wai [1 ]
Kang, Wenpei [1 ]
Lee, Chun-Sing [1 ]
Zhang, Wenjun [1 ]
机构
[1] City Univ Hong Kong, Ctr Super Diamond & Adv Films COSDAF, Dept Phys & Mat Sci, Hong Kong, Hong Kong, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Funct Thin Films Res Ctr, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL PERFORMANCE; REACTION-MECHANISMS; ELECTRODE MATERIALS; MMOO4; M; GRAPHENE; CAPACITY; STORAGE; FE3O4; NANOSHEETS; COMPOSITES;
D O I
10.1039/c5ta05723j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
FeMoO4 nanorods were synthesized by a one-step solvothermal method and demonstrated to have attractive performance as an anode material in lithium ion batteries (LIBs). The specific capacity of the electrode exhibited an initial fading in the first 50 cycles and subsequently recovered to 1265 mA h g(-1) at about the 500th cycle at a rate of 1C, after that, the capacity remained stable around 1110 mA h g(-1) until the 1000th cycle. Based on comprehensive analysis of the structural and chemical evolution at each stage of capacity variation, we illustrated that the FeMoO4 nanorods were converted to a Fe2O3/MoO3 mixture after the first cycle and they experienced gradual structural variation of grain refinement and amorphization with their morphology transformed from nanorods to nanosheets upon cycling. Such changes in the chemical composition and microstructure of nanorods led to larger effective surface area, improved electrochemical reaction kinetics, and capacity retention capability. As a similar tendency of the specific capacity upon cycling has been widely observed for metal oxide anodes, studies on structural and chemical evolution of electrode materials during the whole cyclic life will be helpful for understanding their electrochemical reaction mechanism and provide guidance to material design and structural optimization of electrodes.
引用
收藏
页码:20527 / 20534
页数:8
相关论文
共 50 条
  • [31] From spent graphite to recycle graphite anode for high-performance lithium ion batteries and sodium ion batteries
    Liu, Kui
    Yang, Shenglong
    Luo, Luqin
    Pan, Qichang
    Zhang, Peng
    Huang, Youguo
    Zheng, Fenghua
    Wang, Hongqiang
    Li, Qingyu
    ELECTROCHIMICA ACTA, 2020, 356
  • [32] Interfacial structural stabilization on amorphous silicon anode for improved cycling performance in lithium-ion batteries
    Nguyen, Cao Cuong
    Song, Seung-Wan
    ELECTROCHIMICA ACTA, 2010, 55 (08) : 3026 - 3033
  • [33] Germanium anode with lithiated-copper-oxide nanorods as an electronic-conductor for high-performance lithium-ion batteries
    Yang, Zhibo
    Bai, Shuai
    Yue, Hongwei
    Li, Xiuwan
    Liu, Dequan
    Lin, Shumei
    Li, Fei
    He, Deyan
    MATERIALS LETTERS, 2014, 136 : 107 - 110
  • [34] A high-performance tin phosphide/carbon composite anode for lithium-ion batteries
    Wang, Miao
    Weng, Guo-Ming
    Yasin, Ghulam
    Kumar, Mohan
    Zhao, Wei
    DALTON TRANSACTIONS, 2020, 49 (46) : 17026 - 17032
  • [35] Twisted carbonaceous nanoribbons as high-performance anode material for lithium-ion batteries
    Hao-Ran Wang
    Wen-Jun Cai
    Yong-Gang Yang
    Yi Li
    Journal of Nanoparticle Research, 2019, 21
  • [36] High-performance silicon/carbon/graphite composites as anode materials for lithium ion batteries
    Yang, Xuelin
    Wen, Zhaoyin
    Xu, Xiaoxiong
    Lin, Bin
    Lin, Zuxiang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (07) : A1341 - A1344
  • [37] New Insights into the High-Performance Black Phosphorus Anode for Lithium-Ion Batteries
    Li, Minsi
    Li, Weihan
    Hu, Yongfeng
    Yakovenko, Andrey A.
    Ren, Yang
    Luo, Jing
    Holden, William M.
    Shakouri, Mohsen
    Xiao, Qunfeng
    Gao, Xuejie
    Zhao, Feipeng
    Liang, Jianwen
    Feng, Renfei
    Li, Ruying
    Seidler, Gerald T.
    Brandys, Frank
    Divigalpitiya, Ranjith
    Sham, Tsun-Kong
    Sun, Xueliang
    ADVANCED MATERIALS, 2021, 33 (35)
  • [38] Tetragonal BN monolayer: A high-performance anode material for lithium-ion batteries
    Xiong, Xin
    Lu, Zheng
    Liu, Chun-Sheng
    Ye, Xiao-Juan
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 232
  • [39] Polyaniline encapsulated silicon nanocomposite as high-performance anode materials for lithium ion batteries
    Hua-Chao Tao
    Xue-Lin Yang
    Lu-Lu Zhang
    Shi-Bing Ni
    Journal of Solid State Electrochemistry, 2014, 18 : 1989 - 1994
  • [40] Monolayer MBenes: prediction of anode materials for high-performance lithium/sodium ion batteries
    Jia, Jun
    Li, BiJun
    Duan, Shengquan
    Cui, Zhao
    Gao, Hongtao
    NANOSCALE, 2019, 11 (42) : 20307 - 20314