Iron(II) molybdate (FeMoO4) nanorods as a high-performance anode for lithium ion batteries: structural and chemical evolution upon cycling

被引:146
作者
Zhang, Zhenyu [1 ]
Li, Wenyue [2 ]
Ng, Tsz-Wai [1 ]
Kang, Wenpei [1 ]
Lee, Chun-Sing [1 ]
Zhang, Wenjun [1 ]
机构
[1] City Univ Hong Kong, Ctr Super Diamond & Adv Films COSDAF, Dept Phys & Mat Sci, Hong Kong, Hong Kong, Peoples R China
[2] Chinese Acad Sci, Shenzhen Inst Adv Technol, Funct Thin Films Res Ctr, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL PERFORMANCE; REACTION-MECHANISMS; ELECTRODE MATERIALS; MMOO4; M; GRAPHENE; CAPACITY; STORAGE; FE3O4; NANOSHEETS; COMPOSITES;
D O I
10.1039/c5ta05723j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
FeMoO4 nanorods were synthesized by a one-step solvothermal method and demonstrated to have attractive performance as an anode material in lithium ion batteries (LIBs). The specific capacity of the electrode exhibited an initial fading in the first 50 cycles and subsequently recovered to 1265 mA h g(-1) at about the 500th cycle at a rate of 1C, after that, the capacity remained stable around 1110 mA h g(-1) until the 1000th cycle. Based on comprehensive analysis of the structural and chemical evolution at each stage of capacity variation, we illustrated that the FeMoO4 nanorods were converted to a Fe2O3/MoO3 mixture after the first cycle and they experienced gradual structural variation of grain refinement and amorphization with their morphology transformed from nanorods to nanosheets upon cycling. Such changes in the chemical composition and microstructure of nanorods led to larger effective surface area, improved electrochemical reaction kinetics, and capacity retention capability. As a similar tendency of the specific capacity upon cycling has been widely observed for metal oxide anodes, studies on structural and chemical evolution of electrode materials during the whole cyclic life will be helpful for understanding their electrochemical reaction mechanism and provide guidance to material design and structural optimization of electrodes.
引用
收藏
页码:20527 / 20534
页数:8
相关论文
共 44 条
[1]   Effect of phase composition of the oxidic precursor on the HDS activity of the sulfided molybdates of Fe(II), Co(II), and Ni(II) [J].
Brito, JL ;
Barbosa, AL .
JOURNAL OF CATALYSIS, 1997, 171 (02) :467-475
[2]   Manganese Oxide/Carbon Yolk-Shell Nanorod Anodes for High Capacity Lithium Batteries [J].
Cai, Zhengyang ;
Xu, Lin ;
Yan, Mengyu ;
Han, Chunhua ;
He, Liang ;
Hercule, Kalele Mulonda ;
Niu, Chaojiang ;
Yuan, Zefan ;
Xu, Wangwang ;
Qu, Longbing ;
Zhao, Kangning ;
Mai, Liqiang .
NANO LETTERS, 2015, 15 (01) :738-744
[3]   Interconnected Network of CoMoO4 Submicrometer Particles As High Capacity Anode Material for Lithium Ion Batteries [J].
Cherian, Christie T. ;
Reddy, M. V. ;
Haur, Sow Chorng ;
Chowdari, B. V. R. .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (03) :918-923
[4]   Enhanced potential of amorphous electrode materials:: Case study of RuO2 [J].
Delmer, Olga ;
Balaya, Palani ;
Kienle, Lorenz ;
Maier, Joachim .
ADVANCED MATERIALS, 2008, 20 (03) :501-+
[5]   Controlled Growth of Porous α-Fe2O3 Branches on β-MnO2 Nanorods for Excellent Performance in Lithium-Ion Batteries [J].
Gu, Xin ;
Chen, Liang ;
Ju, Zhicheng ;
Xu, Huayun ;
Yang, Jian ;
Qian, Yitai .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (32) :4049-4056
[6]  
Guo G. X., 2014, ADV ENERGY MATER, V4
[7]   Interdispersed Amorphous MnOx-Carbon Nanocomposites with Superior Electrochemical Performance as Lithium-Storage Material [J].
Guo, Juchen ;
Liu, Qing ;
Wang, Chunsheng ;
Zachariah, Michael R. .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (04) :803-811
[8]   CoMn2O4 Spinel Hierarchical Microspheres Assembled with Porous Nanosheets as Stable Anodes for Lithium-ion Batteries [J].
Hu, Lin ;
Zhong, Hao ;
Zheng, Xinrui ;
Huang, Yimin ;
Zhang, Ping ;
Chen, Qianwang .
SCIENTIFIC REPORTS, 2012, 2
[9]   One-Pot Hydrothermal Synthesis of FeMoO4 Nanocubes as an Anode Material for Lithium-Ion Batteries with Excellent Electrochemical Performance [J].
Ju, Zhicheng ;
Zhang, En ;
Zhao, Yulong ;
Xing, Zheng ;
Zhuang, Quanchao ;
Qiang, Yinghuai ;
Qian, Yitai .
SMALL, 2015, 11 (36) :4753-4761
[10]   A theoretical approach to evaluate the rate capability of Li-ion battery cathode materials [J].
Kalantarian, Mohammad Mahdi ;
Asgari, Sirous ;
Mustarelli, Piercarlo .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (01) :107-115