On well-posedness and large time behavior for smectic-A liquid crystals equations in R3

被引:0
作者
Zhao, Xiaopeng [1 ]
Zhou, Yong [2 ,3 ]
机构
[1] Northeastern Univ, Coll Sci, Shenyang 110819, Peoples R China
[2] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Peoples R China
[3] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2020年 / 71卷 / 05期
关键词
Smectic-A liquid crystals equations; Local well-posedness; Global well-posedness; Decay estimates; 2-PHASE INCOMPRESSIBLE FLOWS; NAVIER-STOKES EQUATIONS; DIFFUSE-INTERFACE MODEL; ASYMPTOTIC-BEHAVIOR; WEAK SOLUTIONS; DECAY; CONVERGENCE; EQUILIBRIUM; EXISTENCE;
D O I
10.1007/s00033-020-01407-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this manuscript is to study the well-posedness and decay estimates for strong solutions to the Cauchy problem of 3D smectic-A liquid crystals equations. First, applying Banach fixed point theorem, we prove the local existence and uniqueness of strong solutions. Then, by establishing some nontrivial estimates with energy method and a standard continuity argument, we prove that there exists a unique global strong solution provided that the initial data are sufficiently small. Moreover, we also establish the suitable negative Sobolev norm estimates and obtain the optimal decay rates of the higher-order spatial derivatives of the strong solutions.
引用
收藏
页数:19
相关论文
共 41 条
[1]   On an incompressible Navier-Stokes/Cahn-Hilliard system with degenerate mobility [J].
Abels, Helmut ;
Depner, Daniel ;
Garcke, Harald .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (06) :1175-1190
[2]   Existence of Weak Solutions for a Diffuse Interface Model for Viscous, Incompressible Fluids with General Densities [J].
Abels, Helmut .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 289 (01) :45-73
[3]   On a Diffuse Interface Model for Two-Phase Flows of Viscous, Incompressible Fluids with Matched Densities [J].
Abels, Helmut .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 194 (02) :463-506
[4]  
[Anonymous], 2004, Classical and modern Fourier analysis
[5]   Mathematical developments in the study of smectic A liquid crystals [J].
Calderer, MC ;
Liu, C .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2000, 38 (9-10) :1113-1128
[6]   A review of mathematical analysis of nematic and smectic-A liquid crystal models [J].
Climent-Ezquerra, Blanca ;
Guillen-Gonzalez, Francisco .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2014, 25 :133-153
[7]   Convergence to equilibrium for smectic-A liquid crystals in 3D domains without constraints for the viscosity [J].
Climent-Ezquerra, Blanca ;
Guillen-Gonzalez, Francisco .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 102 :208-219
[8]   ON A DOUBLE PENALIZED SMECTIC-A MODEL [J].
Climent-Ezquerra, Blanca ;
Guillen-Gonzalez, Francisco .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (12) :4171-4182
[9]   GLOBAL IN TIME SOLUTION AND TIME-PERIODICITY FOR A SMECTIC-A LIQUID CRYSTAL MODEL [J].
Climent-Ezquerra, Blanca ;
Guillen-Gonzalez, Francisco .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (06) :1473-1493
[10]   The onset of layer undulations in smectic A liquid crystals due to a strong magnetic field [J].
Contreras, A. ;
Garcia-Azpeitia, C. ;
Garcia-Cervera, C. J. ;
Joo, S. .
NONLINEARITY, 2016, 29 (08) :2474-2496