Long-Distance Bell-State Analysis of Fully Independent Polarization Weak Coherent States

被引:13
作者
da Silva, Thiago Ferreira [1 ,2 ]
Vitoreti, Douglas [1 ]
Xavier, Guilherme B. [3 ,4 ,5 ]
Temporao, Guilherme P. [1 ]
von der Weid, Jean Pierre [1 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Ctr Telecommun Studies, Rio De Janeiro, RJ, Brazil
[2] Natl Inst Metrol Qual & Technol, Optic Metrol Div, Duque De Caxias, RJ, Brazil
[3] Univ Concepcion, Dept Ingn Elect, Concepcion, Chile
[4] Univ Concepcion, Ctr Optic & Photon, Concepcion, Chile
[5] Univ Concepcion, MSI Nucleus Adv Optic, Concepcion, Chile
关键词
Bell state analysis; optical fiber communication; optical polarization; quantum communication; single-photon detection; QUANTUM KEY DISTRIBUTION; ATOMIC ENSEMBLES; COMMUNICATION; ATTACK; REPEATERS; SECURITY; SYSTEMS;
D O I
10.1109/JLT.2013.2274615
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Here we report the experimental implementation of a linear-optics partial Bell-state analyzer following the propagation of single-photons through long telecommunication optical fibers. Polarization encoded weak coherent states were sent from independent remote continuous wave faint laser sources over two 8.5 km long optical fiber spools. Automatic polarization stabilization systems were used in each spool to compensate the random polarization drift. We demonstrate stable two-photon interference with a dip visibility of 47.8% over a 40 minute time-interval, close to the theoretical maximum of 50% for weak coherent states. We successfully show that it is possible to carry out remote long-distance Bell-state analysis of polarization weak coherent states in spite of random residual birefringence fluctuations in optical fibers. These results pave the way for important applications in quantum communications with polarization qubits such as measurement device-independent quantum key distribution and quantum repeaters.
引用
收藏
页码:2881 / 2887
页数:7
相关论文
共 37 条
[1]   Device-independent security of quantum cryptography against collective attacks [J].
Acin, Antonio ;
Brunner, Nicolas ;
Gisin, Nicolas ;
Massar, Serge ;
Pironio, Stefano ;
Scarani, Valerio .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[2]  
[Anonymous], 2005, Introductory Quantum Optics
[3]   Side-Channel-Free Quantum Key Distribution [J].
Braunstein, Samuel L. ;
Pirandola, Stefano .
PHYSICAL REVIEW LETTERS, 2012, 108 (13)
[4]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[5]   Maximum efficiency of a linear-optical Bell-state analyzer [J].
Calsamiglia, J ;
Lütkenhaus, N .
APPLIED PHYSICS B-LASERS AND OPTICS, 2001, 72 (01) :67-71
[6]   Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems [J].
da Silva, Thiago Ferreira ;
Xavier, Guilherme B. ;
Temporao, Guilherme P. ;
von der Weid, Jean Pierre .
OPTICS EXPRESS, 2012, 20 (17) :18911-18924
[7]   Long-distance quantum communication with atomic ensembles and linear optics [J].
Duan, LM ;
Lukin, MD ;
Cirac, JI ;
Zoller, P .
NATURE, 2001, 414 (6862) :413-418
[8]   Full-field implementation of a perfect eavesdropper on a quantum cryptography system [J].
Gerhardt, Ilja ;
Liu, Qin ;
Lamas-Linares, Anta ;
Skaar, Johannes ;
Kurtsiefer, Christian ;
Makarov, Vadim .
NATURE COMMUNICATIONS, 2011, 2
[9]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195
[10]   Quantum communication [J].
Gisin, Nicolas ;
Thew, Rob .
NATURE PHOTONICS, 2007, 1 (03) :165-171