Emerging role of glial cells in the control of body weight

被引:52
作者
Garcia-Caceres, Cristina [1 ,3 ]
Fuente-Martin, Esther [2 ,3 ]
Argente, Jesus [2 ,3 ,4 ]
Chowen, Julie A. [2 ,3 ]
机构
[1] German Res Ctr Environm Hlth GmbH, Helmholtz Ctr Munich, Inst Diabet & Obes, Munich, Germany
[2] Hosp Infantil Univ Nino Jesus, Dept Endorinol, Inst Invest La Princesa, Madrid 28009, Spain
[3] Inst Salud Carlos III, CIBER Fisiopatol & Nutr, Madrid, Spain
[4] Univ Autonoma Madrid, Dept Pediat, Madrid, Spain
关键词
Astrocytes; Gliosis; Metabolic control; Hypothalamus; Obesity; CENTRAL-NERVOUS-SYSTEM; BLOOD-BRAIN-BARRIER; GONADAL HORMONE REGULATION; GLUCOSE-TRANSPORTER; MONOCARBOXYLATE TRANSPORTER; APOLIPOPROTEIN-E; ARCUATE NUCLEUS; LEPTIN RECEPTOR; GLUTAMATE TRANSPORTERS; FOOD-INTAKE;
D O I
10.1016/j.molmet.2012.07.001
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Glia are the most abundant cell type in the brain and are indispensible for the normal execution of neuronal actions. They protect neurons from noxious insults and modulate synaptic transmission through affectation of synaptic inputs, release of glial transmitters and uptake of neurotransmitters from the synaptic cleft. They also transport nutrients and other circulating factors into the brain thus controlling the energy sources and signals reaching neurons. Moreover, glia express receptors for metabolic hormones, such as leptin and insulin, and can be activated in response to increased weight gain and dietary challenges. However, chronic glial activation can be detrimental to neurons, with hypothalamic astrocyte activation or gliosis suggested to be involved in the perpetuation of obesity and the onset of secondary complications. It is now accepted that glia may be a very important participant in metabolic control and a possible therapeutical target. Here we briefly review this rapidly advancing field. (C) 2012 Elsevier GmbH. Open access under CC-BY.NC-ND license.
引用
收藏
页码:37 / 46
页数:10
相关论文
共 183 条
[21]   Glucose Transporter-1 in the Hypothalamic Glial Cells Mediates Glucose Sensing to Regulate Glucose Production In Vivo [J].
Chari, Madhu ;
Yang, Clair S. ;
Lam, Carol K. L. ;
Lee, Katie ;
Mighiu, Patricia ;
Kokorovic, Andrea ;
Cheung, Grace W. C. ;
Lai, Teresa Y. Y. ;
Wang, Penny Y. T. ;
Lam, Tony K. T. .
DIABETES, 2011, 60 (07) :1901-1906
[22]   Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutation in the leptin receptor gene in db/db mice [J].
Chen, H ;
Charlat, O ;
Tartaglia, LA ;
Woolf, EA ;
Weng, X ;
Ellis, SJ ;
Lakey, ND ;
Culpepper, J ;
Moore, KJ ;
Breitbart, RE ;
Duyk, GM ;
Tepper, RI ;
Morgenstern, JP .
CELL, 1996, 84 (03) :491-495
[23]   Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus [J].
Cheung, CC ;
Clifton, DK ;
Steiner, RA .
ENDOCRINOLOGY, 1997, 138 (10) :4489-4492
[24]   Astrocytes in the arcuate nucleus and median eminence that take up a fluorescent dye from the circulation express leptin receptors and neuropeptide YY1 receptors [J].
Cheunsuang, O ;
Morris, R .
GLIA, 2005, 52 (03) :228-233
[25]   Insulin receptor signaling in the development of neuronal structure and function [J].
Chiu, Shu-Ling ;
Cline, Hollis T. .
NEURAL DEVELOPMENT, 2010, 5
[26]   Similar perisynaptic glial localization for the Na+,K+-ATPase α2 subunit and the glutamate transporters GLAST and GLT-1 in the rat somatosensory cortex [J].
Cholet, N ;
Pellerin, L ;
Magistretti, PJ ;
Hamel, E .
CEREBRAL CORTEX, 2002, 12 (05) :515-525
[27]  
Clarke Donald D., 1994, P645
[28]  
CLARKE DW, 1984, J BIOL CHEM, V259, P1672
[29]   Serum immunoreactive leptin concentrations in normal-weight and obese humans [J].
Considine, RV ;
Sinha, MK ;
Heiman, ML ;
Kriauciunas, A ;
Stephens, TW ;
Nyce, MR ;
Ohannesian, JP ;
Marco, CC ;
McKee, LJ ;
Bauer, TL ;
Caro, JF .
NEW ENGLAND JOURNAL OF MEDICINE, 1996, 334 (05) :292-295
[30]  
COOK RP, 1958, CHOLESTEROL CHEM BIO, P1