A Procedure for Constructing the Solution of a Nonlinear Fredholm Integro-Differential Equation of Second Order

被引:1
|
作者
da Gama, Rogerio Martins Saldanha [1 ]
da Gama, Rogerio Pazetto Saldanha [1 ]
机构
[1] Univ Estado Rio De Janeiro, Mech Engn Dept, Sao Fco Xavier St 524, BR-20550013 Rio De Janeiro, Brazil
关键词
integro-differential equation; solution construction; application to heat transfer problems; BOUNDARY-VALUE-PROBLEMS; NUMERICAL-SOLUTION; HEAT-TRANSFER; NATURAL-CONVECTION; ENERGY-TRANSFER; SYSTEM; SIMULATION; TAYLOR; BODIES;
D O I
10.3390/axioms11120672
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, a large class of integro-differential equations, arising from the description of heat transfer problems, is considered, particularly the nonlinear equations. We propose a procedure for constructing their solution in a very simple and reliable way in which the only needed tool is the same one employed to solve a linear second-order ordinary differential equation, subject to Robin boundary conditions. Proofs of the convergence, existence, and uniqueness are presented. Some special cases are simulated to illustrate the proposed tools.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Existence of Solution of Nonlinear Fuzzy Fredholm Integro-differential Equations
    Mosleh, M.
    Otadi, M.
    FUZZY INFORMATION AND ENGINEERING, 2016, 8 (01) : 17 - 30
  • [22] NONLOCAL PROBLEM FOR A SECOND ORDER FREDHOLM INTEGRO-DIFFERENTIAL EQUATION WITH DEGENERATE KERNEL AND REAL PARAMETERS
    Yuldashev, Tursun K.
    Artykova, Zhyldyz A.
    Alladustov, Shukhrat U.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2023, 49 (02): : 228 - 242
  • [23] Solution of linear fractional Fredholm integro-differential equation by using second kind Chebyshev wavelet
    Setia, Amit
    Liu, Yucheng
    Vatsala, A. S.
    2014 11TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS (ITNG), 2014, : 465 - 469
  • [24] PERIODIC SOLUTIONS OF A SECOND-ORDER NONLINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATION
    Alymbaev, A. T.
    Kyzy, A. Bapa
    Sharshembieva, F. K.
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2024, 31 (02): : 285 - 297
  • [25] Numerical Solution of the Cauchy Problem for a Second-Order Integro-Differential Equation
    P. N. Vabishchevich
    Differential Equations, 2022, 58 : 899 - 907
  • [26] INVERSE PROBLEM FOR A FREDHOLM THIRD ORDER PARTIAL INTEGRO-DIFFERENTIAL EQUATION
    Yuldashev, T. K.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2014, (01): : 56 - 65
  • [27] A Study of Error Estimation for Second Order Fredholm Integro-Differential Equations
    R. Parvaz
    M. Zarebnia
    A. Saboor Bagherzadeh
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 1203 - 1223
  • [28] Numerical Solution of the Cauchy Problem for a Second-Order Integro-Differential Equation
    Vabishchevich, P. N.
    DIFFERENTIAL EQUATIONS, 2022, 58 (07) : 899 - 907
  • [29] A STUDY OF ERROR ESTIMATION FOR SECOND ORDER FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
    Parvaz, R.
    Zarebnia, M.
    Bagherzadeh, A. Saboor
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (03): : 1203 - 1223
  • [30] On solvability of boundary value problem for a nonlinear Fredholm integro-differential equation
    Assanova, A. T.
    Zhumatov, S. S.
    Mynbayeva, S. T.
    Karakenova, S. G.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2022, 105 (01): : 25 - 34