Local Minimal Curves in Homogeneous Reductive Spaces of the Unitary Group of a Finite von Neumann Algebra

被引:1
作者
Chiumiento, Eduardo [1 ]
机构
[1] Natl Univ La Plata, Fac Ciencias Exactas, Dto Matemat, RA-1900 La Plata, Argentina
关键词
Primary; 58B20; Secondary; 46L10; Finite von Neumann algebra; metric geometry; Finsler metric;
D O I
10.1007/s00020-008-1629-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the metric geometry of homogeneous reductive spaces of the unitary group of a finite von Neumann algebra with a non complete Riemannian metric. The main result gives an abstract sufficient condition in order that the geodesics of the Levi-Civita connection are locally minimal. Then, we show how this result applies to several examples.
引用
收藏
页码:365 / 382
页数:18
相关论文
共 16 条
[1]   On the geometry of generalized inverses [J].
Andruchow, E ;
Corach, G ;
Mbekhta, M .
MATHEMATISCHE NACHRICHTEN, 2005, 278 (7-8) :756-770
[2]  
ANDRUCHOW E, INT J MATH IN PRESS
[3]   Grassmannians of a finite algebra in the strong operator topology [J].
Andruchow, Esteban ;
Recht, Lazaro .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2006, 17 (04) :477-491
[4]  
[Anonymous], THEORY OPERATOR ALGE
[5]   The weyl group and the normalizer of a conditional expectation [J].
Argerami, M ;
Stojanoff, D .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1999, 34 (02) :165-186
[6]   Orbits of conditional expectations [J].
Argerami, M ;
Stojanoff, D .
ILLINOIS JOURNAL OF MATHEMATICS, 2001, 45 (01) :243-263
[7]  
Beltita D., 2006, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, V137
[8]   Natural variational problems in the Grassmann manifold of a C*-algebra with trace [J].
Durán, CE ;
Mata-Lorenzo, LE ;
Recht, L .
ADVANCES IN MATHEMATICS, 2000, 154 (01) :196-228
[9]   Metric geometry in homogeneous spaces of the unitary group of a C*-algebra.: Part II.: Geodesics joining fixed endpoints [J].
Durán, CE ;
Mata-Lorenzo, LE ;
Recht, L .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 53 (01) :33-50
[10]   Metric geometry in homogeneous spaces of the unitary group of a C*-algebra:: Part I -: minimal curves [J].
Durán, CE ;
Mata-Lorenzo, LE ;
Recht, L .
ADVANCES IN MATHEMATICS, 2004, 184 (02) :342-366