共 25 条
Note on a partition limit theorem for rank and crank
被引:7
|作者:
Diaconis, Persi
[1
]
Janson, Svante
[2
]
Rhoades, Robert C.
[3
]
机构:
[1] Stanford Univ, Dept Math & Stat, Stanford, CA 94305 USA
[2] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
[3] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金:
美国国家科学基金会;
关键词:
MOMENTS;
D O I:
10.1112/blms/bds121
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
If lambda is a partition of n, then the rank rk(lambda) is the size of the largest part minus the number of parts. Under the uniform distribution on partitions, in K. Bringmann, K. Mahlburg, and R. C. Rhoades (Bull. Lond. Math. Soc., 43 (2011) 661-672), it is shown that <inline-graphic xlink:href="BDS121IM1" xmlns:xlink="http://www.w3.org/1999/xlink"/> has a limiting distribution. We identify the limit as the difference between two independent extreme value distributions and as the distribution of beta(T), where beta(t) is standard Brownian motion and T is the first time that an independendent 3-dimensional Brownian motion hits the unit sphere. The same limit holds for the crank.
引用
收藏
页码:551 / 553
页数:3
相关论文