Horseshoe chaos in cellular neural networks

被引:31
作者
Yang, XS [1 ]
Li, QD
机构
[1] Huazhong Univ Sci & Technol, Dept Math, Wuhan 430074, Peoples R China
[2] Chongqing Univ Posts & Telecomm, Inst Nonlinear Syst, Chongqing 400065, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2006年 / 16卷 / 01期
关键词
chaos; Poincare map; horseshoe; cellular neural networks;
D O I
10.1142/S0218127406014666
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we demonstrate chaos in low dimensional cellular neural networks for some weight matrices. To verify chaoticity of the dynamics in these cellular neural networks, we consider a cross-section properly chosen for the attractors obtained and study the dynamics of the corresponding Poincare maps, and rigorously verify the existence of horseshoe in the manner of coin puter-assisted proof arguments.
引用
收藏
页码:157 / 161
页数:5
相关论文
共 14 条
  • [1] Brain chaos and computation
    Babloyantz, A
    Lourenco, C
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 1996, 7 (04) : 461 - 471
  • [2] CONTROL OF CHAOS IN DELAY-DIFFERENTIAL EQUATIONS, IN A NETWORK OF OSCILLATORS AND IN MODEL CORTEX
    BABLOYANTZ, A
    LOURENCO, C
    SEPULCHRE, JA
    [J]. PHYSICA D, 1995, 86 (1-2): : 274 - 283
  • [3] Chaos and asymptotical stability in discrete-time neural networks
    Chen, LN
    Aihara, K
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1997, 104 (3-4) : 286 - 325
  • [4] Chua L., 2002, CELLULAR NETWORKS VI
  • [5] Chaos in a three dimensional neural network
    Das, A
    Roy, AB
    Das, P
    [J]. APPLIED MATHEMATICAL MODELLING, 2000, 24 (07) : 511 - 522
  • [6] Chaos in a three-dimensional general model of neural network
    Das, A
    Das, P
    Roy, AB
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (10): : 2271 - 2281
  • [7] CHAOS IN AN EFFECTIVE 4-NEURON NEURAL NETWORK
    DAS, PK
    SCHIEVE, WC
    ZENG, ZJ
    [J]. PHYSICS LETTERS A, 1991, 161 (01) : 60 - 66
  • [8] Freeman W. J., 1994, TEMPORAL CODING BRAI, P13, DOI [10.1007/978-3-642-85148-3_2, DOI 10.1007/978-3-642-85148-3_2]
  • [9] CHAOS IN NEUROBIOLOGY
    GUEVARA, MR
    GLASS, L
    MACKEY, MC
    SHRIER, A
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1983, 13 (05): : 790 - 798
  • [10] Robinson C., 1995, Dynamical systems: stability, symbolic dynamics, and chaos