String-averaging incremental stochastic subgradient algorithms

被引:1
作者
Oliveira, R. M. [1 ]
Helou, E. S. [1 ]
Costa, E. F. [1 ]
机构
[1] Univ Sao Paulo, Dept Appl Math & Stat, Inst Math & Comp Sci, Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Convex optimization; stochastic optimization; incremental algorithms; stochastic subgradient methods; approximate projection methods; string-averaging algorithms; GRADIENT METHODS; CONVERGENCE; OPTIMIZATION; STABILITY; FAIRNESS;
D O I
10.1080/10556788.2018.1496432
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a method to solve constrained convex stochastic optimization problems when the objective is a finite sum of convex functions . Our method is based on Incremental Stochastic Subgradient Algorithms and String-Averaging techniques, with an assumption that the subgradient directions are affected by random errors in each iteration. Our analysis allows the method to perform approximate projections onto the feasible set in each iteration. We provide convergence results for the case where a diminishing step-size rule is used. We test our method in a large set of random instances of a stochastic convex programming problem and we compare its performance with the robust mirror descent stochastic approximation algorithm proposed in Nemirovski et al. (Robust stochastic approximation approach to stochastic programming, SIAM J Optim 19 (2009), pp. 15741609).
引用
收藏
页码:665 / 692
页数:28
相关论文
共 67 条
[1]  
[Anonymous], 2010, BIOMEDICAL MATH PROM
[2]  
[Anonymous], 1985, NONDIFFERENTIABLE OP
[3]  
[Anonymous], 1979, AVTOMATIKA TELEMEKHA
[4]  
[Anonymous], 1996, SPRINGER INT SERIES, DOI DOI 10.1007/978-1-4613-1449-3
[5]  
[Anonymous], WILEY INTERSCI SER D
[6]  
[Anonymous], 2001, STUD COMPUT MATH
[7]  
[Anonymous], 2016, Pure Appl. Funct. Anal.
[8]   Convergence properties of dynamic string-averaging projection methods in the presence of perturbations [J].
Bargetz, Christian ;
Reich, Simeon ;
Zalas, Rafal .
NUMERICAL ALGORITHMS, 2018, 77 (01) :185-209
[9]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[10]  
Bertsekas D., 1987, Data Networks