Ecological Performance of an Irreversible Proton Exchange Membrane Fuel Cell

被引:4
|
作者
Li, Changjie [1 ]
Xu, Bing [1 ]
Ma, Zheshu [1 ]
机构
[1] Nanjing Forestry Univ, Coll Automobile & Traff Engn, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
PEMFC; Finite Time Thermodynamics; Ecological Performance; Numerical Simulation; BRAYTON HEAT ENGINE; MATHEMATICAL-MODEL; ECOP OPTIMIZATION; COEFFICIENT; SYSTEM; PEMFC;
D O I
10.1166/sam.2020.3846
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper a novel PEMFC voltage model considering the leakage current is established. Numerical simulation results based on the newly established PEMFC model is compared with the experimental results and indicates that they have a good match with the experimental results. Based on the proposed voltage model and previous studies, the PEMFC ecological criterion was proposed and derived. As well, other finite time thermodynamics objective functions including entropy yield, ecological objective function and ecological performance coefficient formula are derived for PEMFCs. Detailed numerical simulations are performed considering different design parameters and operating parameters. Ecological performance of an irreversible PEMFC is gained and such results can be further used for ecological optimization to yield maximum performance of the PEMFC.
引用
收藏
页码:1225 / 1235
页数:11
相关论文
共 50 条
  • [31] A cell voltage equation for an intermediate temperature proton exchange membrane fuel cell
    Scott, Keith
    Mamlouk, M.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (22) : 9195 - 9202
  • [32] A two dimensional agglomerate model for a proton exchange membrane fuel cell
    Xing, Lei
    Mamlouk, Mohamed
    Scott, Keith
    ENERGY, 2013, 61 : 196 - 210
  • [33] Proton Exchange Membrane Fuel Cell Reversal: A Review
    Qin, Congwei
    Wang, Jue
    Yang, Daijun
    Li, Bing
    Zhang, Cunman
    CATALYSTS, 2016, 6 (12):
  • [34] Thermodynamic analysis of a Proton Exchange Membrane fuel cell
    Ozgur, Tayfun
    Yakaryilmaz, Ali Cem
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (38) : 18007 - 18013
  • [35] A review on prognostics and health monitoring of proton exchange membrane fuel cell
    Sutharssan, Thamo
    Montalvao, Diogo
    Chen, Yong Kang
    Wang, Wen-Chung
    Pisac, Claudia
    Elemara, Hakim
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 75 : 440 - 450
  • [36] Parametric study of the proton exchange membrane fuel cell for investigation of enhanced performance used in fuel cell vehicles
    Babu, Attuluri R. Vijay
    Kumar, P. Manoj
    Rao, G. Srinivasa
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (04) : 3953 - 3958
  • [37] Effects of Cooling System Boundary Conditions on the Performance of Proton Exchange Membrane Fuel Cell: A Comprehensive Analysis
    Wang, Yaochen
    Ren, Hongjuan
    Li, Cong
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2024, 21 (02)
  • [38] Effect of interdigitated leaf channel design bipolar plate on the performance of proton exchange membrane fuel cell
    Badduri, Srinivasa Reddy
    Srinivasulu, G. Naga
    Rao, S. Srinivasa
    Venkateswarlu, V.
    Karunakar, Ch
    Sridhar, K.
    Charyulu, A. V. S. Ramanuja
    CHEMICAL PAPERS, 2023, 77 (02) : 1095 - 1106
  • [39] Design of a novel nautilus bionic flow field for proton exchange membrane fuel cell by analyzing performance
    Li, Nan
    Wang, Wanteng
    Xu, Ruiyang
    Zhang, Jinhui
    Xu, Hongpeng
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2023, 200
  • [40] Exergetic Performance Coefficient Analysis and Optimization of a High-Temperature Proton Exchange Membrane Fuel Cell
    Li, Dongxu
    Li, Yanju
    Ma, Zheshu
    Zheng, Meng
    Lu, Zhanghao
    MEMBRANES, 2022, 12 (01)