Ecological Performance of an Irreversible Proton Exchange Membrane Fuel Cell

被引:4
作者
Li, Changjie [1 ]
Xu, Bing [1 ]
Ma, Zheshu [1 ]
机构
[1] Nanjing Forestry Univ, Coll Automobile & Traff Engn, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
PEMFC; Finite Time Thermodynamics; Ecological Performance; Numerical Simulation; BRAYTON HEAT ENGINE; MATHEMATICAL-MODEL; ECOP OPTIMIZATION; COEFFICIENT; SYSTEM; PEMFC;
D O I
10.1166/sam.2020.3846
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper a novel PEMFC voltage model considering the leakage current is established. Numerical simulation results based on the newly established PEMFC model is compared with the experimental results and indicates that they have a good match with the experimental results. Based on the proposed voltage model and previous studies, the PEMFC ecological criterion was proposed and derived. As well, other finite time thermodynamics objective functions including entropy yield, ecological objective function and ecological performance coefficient formula are derived for PEMFCs. Detailed numerical simulations are performed considering different design parameters and operating parameters. Ecological performance of an irreversible PEMFC is gained and such results can be further used for ecological optimization to yield maximum performance of the PEMFC.
引用
收藏
页码:1225 / 1235
页数:11
相关论文
共 39 条
[1]   A model-based parametric analysis of a direct ethanol polymer electrolyte membrane fuel cell performance [J].
Andreadis, G. M. ;
Podias, A. K. M. ;
Tsiakaras, P. E. .
JOURNAL OF POWER SOURCES, 2009, 194 (01) :397-407
[2]   A general property of non-endoreversible thermal cycles [J].
Angulo-Brown, F ;
Arias-Hernández, LA ;
Páez-Hernández, R .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1999, 32 (12) :1415-1420
[3]   Thermodynamic modelling of a proton exchange membrane fuel cell [J].
Ay, M. ;
Midilli, A. .
INTERNATIONAL JOURNAL OF EXERGY, 2006, 3 (01) :16-44
[4]   Density Measurements and Partial Molar Volume Analysis of Different Membranes for Polymer Electrolyte Membrane Fuel Cells [J].
Bai, Yujia ;
Schaberg, Mark S. ;
Hamrock, Steven J. ;
Tang, Zhijiang ;
Goenaga, Gabriel ;
Papandrew, Alexander B. ;
Zawodzinski, Thomas A., Jr. .
ELECTROCHIMICA ACTA, 2017, 242 :307-314
[5]   Further refinements in the segmented cell approach to diagnosing performance in polymer electrolyte fuel cells [J].
Bender, G ;
Wilson, MS ;
Zawodzinski, TA .
JOURNAL OF POWER SOURCES, 2003, 123 (02) :163-171
[6]   Analysis of proton exchange membrane fuel cells voltage drops for different operating parameters [J].
Benmouiza, Khalil ;
Cheknane, Ali .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (06) :3512-3519
[7]   Three-dimensional computational analysis of transport phenomena in a PEM fuel cell - a parametric study [J].
Berning, T ;
Djilali, N .
JOURNAL OF POWER SOURCES, 2003, 124 (02) :440-452
[8]   Simulation and exergy analysis of a hybrid Solid Oxide Fuel Cell (SOFC)-Gas Turbine System [J].
Calise, F. ;
d'Accadia, M. Dentice ;
Palombo, A. ;
Vanoli, L. .
ENERGY, 2006, 31 (15) :3278-3299
[9]   A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness [J].
Chan, SH ;
Khor, KA ;
Xia, ZT .
JOURNAL OF POWER SOURCES, 2001, 93 (1-2) :130-140
[10]   Ecological optimization for generalized irreversible Carnot refrigerators [J].
Chen, LG ;
Zhu, XQ ;
Sun, FR ;
Wu, C .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (01) :113-118