Preserving maximal monotonicity with applications in sum and composition rules

被引:1
作者
Alimohammady, Mohsen [1 ]
Dadashi, Vahid [2 ]
机构
[1] Univ Mazandaran, Fac Math Sci, Dept Math, Babol Sar 4741695447, Iran
[2] Islamic Azad Univ, Dept Math, Sari Branch, Sari, Iran
关键词
Convex process; Fitzpatrick function; Maximal monotone operator; Representative function; Sum and composition rules; REPRESENTATION; OPERATORS; DUALITY;
D O I
10.1007/s11590-011-0435-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we study maximal monotonicity preserving mappings on the Banach space X x X (*). Indeed, for a maximal monotone set and for a multifunction , under some sufficient conditions on M and T we show that T(M) is maximal monotone. As two consequences of this result we get sum and composition rules for maximal monotone operators.
引用
收藏
页码:511 / 517
页数:7
相关论文
共 23 条
[1]  
Alimohammady M., 2010, JARPM, V2, P48
[2]  
Arens R., 1961, Pacific J. Math, V11, P9, DOI [10.2140/pjm.1961.11.9, DOI 10.2140/PJM.1961.11.9]
[3]  
Aubin J.P., 1990, SET VALUED ANAL, DOI 10.1007/978-0-8176-4848-0
[4]  
Borwein JM, 2006, J CONVEX ANAL, V13, P561
[5]   Fifty years of maximal monotonicity [J].
Borwein, Jonathan M. .
OPTIMIZATION LETTERS, 2010, 4 (04) :473-490
[6]   MAXIMAL MONOTONICITY FOR THE PRECOMPOSITION WITH A LINEAR OPERATOR [J].
Bot, Radu Ioan ;
Grad, Sorin-Mihai ;
Wanka, Gert .
SIAM JOURNAL ON OPTIMIZATION, 2007, 17 (04) :1239-1252
[7]  
Gabay D., STUDIES MATH ITS APP, V15, P299
[8]  
Giannessi F., 2002, EQUILIBRIUM PROBLEMS
[9]  
Hadjisavvas N., 2001, ADV CONVEX ANAL GLOB, V54
[10]   A dual criterion for maximal monotonicity of composition operators [J].
Jeyakumar, V. ;
Wu, Z. Y. .
SET-VALUED ANALYSIS, 2007, 15 (03) :265-273