Galerkin method for nonlocal mixed boundary value problem for the Moore-Gibson-Thompson equation with integral condition

被引:12
作者
Boulaaras, Salah [1 ,2 ]
Zarai, Abderrahmane [3 ]
Draifia, Alaeddin [3 ]
机构
[1] Qassim Univ, Coll Sci & Arts, Dept Math, Buraydah, Saudi Arabia
[2] Univ Oran 1, Lab Fundamental & Appl Math Oran LMFAO, Ahmed Benbella, Oran, Algeria
[3] Larbi Tebessi Univ, Dept Math & Comp Sci, Lab Math Informat & Syst LAMIS, Tebessa 12002, Algeria
关键词
approximate solution; Galerkin method; Moore-Gibson-Thompson equation; nonlocal condition; MEMORY; DECAY;
D O I
10.1002/mma.5540
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are going to deal with the nonlocal mixed boundary value problem for the Moore-Gibson-Thompson equation. Galerkin method was the main used tool for proving the solvability of the given nonlocal problem.
引用
收藏
页码:2664 / 2679
页数:16
相关论文
共 25 条
[1]  
[Anonymous], 1992, THEORETICAL ASPECTS
[2]  
[Anonymous], 1998, B CLASSE SCI ACAD RO
[3]  
[Anonymous], J APPL MATH STOCHAST
[4]   STEPWISE STABILITY FOR THE HEAT-EQUATION WITH A NONLOCAL CONSTRAINT [J].
CAHLON, B ;
KULKARNI, DM ;
SHI, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (02) :571-593
[5]  
Cannon J. R., 1963, Q. Appl. Math, V21, P155, DOI [10.1090/qam/160437, DOI 10.1090/QAM/160437]
[6]   A REACTION-DIFFUSION SYSTEM ARISING IN MODELING MAN-ENVIRONMENT DISEASES [J].
CAPASSO, V ;
KUNISCH, K .
QUARTERLY OF APPLIED MATHEMATICS, 1988, 46 (03) :431-450
[7]   A PARABOLIC EQUATION WITH NONLOCAL BOUNDARY-CONDITIONS ARISING FROM ELECTROCHEMISTRY [J].
CHOI, YS ;
CHAN, KY .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (04) :317-331
[8]   A CLASS OF PARAMETER-ESTIMATION TECHNIQUES FOR FLUID-FLOW IN POROUS-MEDIA [J].
EWING, RE ;
LIN, T .
ADVANCES IN WATER RESOURCES, 1991, 14 (02) :89-97
[9]  
Guezane-Lakoud A., 2011, INT J MATH MATH SCI, V2011
[10]  
Ionkin N.I., 1979, Diff. Uravneniya, V15, P1284