Elastic and Piezoelectric Properties of Zincblende and Wurtzite Crystalline Nanowire Heterostructures

被引:50
作者
Boxberg, Fredrik [3 ]
Sondergaard, Niels [4 ]
Xu, H. Q. [1 ,2 ,3 ]
机构
[1] Peking Univ, Dept Elect, Beijing 100871, Peoples R China
[2] Peking Univ, Key Lab Phys & Chem Nanodevices, Beijing 100871, Peoples R China
[3] Lund Univ, Div Solid State Phys, S-22100 Lund, Sweden
[4] Lund Univ, Div Math Phys, S-22100 Lund, Sweden
基金
芬兰科学院; 瑞典研究理事会;
关键词
nanowire; InAs; InP heterostructure; strain; piezoelectricity; elasticity theory; CORE-SHELL NANOWIRES; III-V NANOWIRES; QUANTUM DOTS; ELECTRONIC-STRUCTURE; GROWTH; GAN; SUPERLATTICES; POLARIZATION; ARRAYS;
D O I
10.1002/adma.201200370
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The elastic and piezoelectric properties of zincblende and wurtzite crystalline InAs/InP nanowire heterostructures have been studied using electro-elastically coupled continuum elasticity theory. A comprehensive comparison of strains, piezoelectric potentials and piezoelectric fields in the two crystal types of nanowire heterostructures is presented. For each crystal type, three different forms of heterostructurescore-shell, axial superlattice, and quantum dot nanowire heterostructuresare considered. In the studied nanowire heterostructures, the principal strains are found to be insensitive to the change in the crystal structure. However, the shear strains in the zincblende and wurtzite nanowire heterostructures can be very different. All the studied nanowire heterostructures are found to exhibit a piezoelectric field along the nanowire axis. The piezoelectric field is in general much stronger in a wurtzite nanowire heterostructure than in its corresponding zincblende heterostructure. Our results are expected to be particularly important for analyzing and understanding the properties of epitaxially grown nanowire heterostructures and for applications in nanowire electronics, optoelectronics, and biochemical sensing.
引用
收藏
页码:4692 / 4706
页数:15
相关论文
共 40 条
  • [1] Ameen M., 2005, Computational Elasticity. Theory of Elasticity and Finite and Boundary Element Methods
  • [2] 8-BANK K.P MODEL OF STRAINED ZINCBLENDE CRYSTALS
    BAHDER, TB
    [J]. PHYSICAL REVIEW B, 1990, 41 (17): : 11992 - 12001
  • [3] Theory of the electronic structure and carrier dynamics of strain-induced (Ga, In) As quantum dots
    Boxberg, Fredrik
    Tulkki, Jukka
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (08) : 1425 - 1471
  • [4] Photovoltaics with Piezoelectric Core-Shell Nanowires
    Boxberg, Fredrik
    Sondergaard, Niels
    Xu, H. Q.
    [J]. NANO LETTERS, 2010, 10 (04) : 1108 - 1112
  • [5] Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices
    Bykhovski, AD
    Gelmont, BL
    Shur, MS
    [J]. JOURNAL OF APPLIED PHYSICS, 1997, 81 (09) : 6332 - 6338
  • [6] Caroff P, 2009, NAT NANOTECHNOL, V4, P50, DOI [10.1038/nnano.2008.359, 10.1038/NNANO.2008.359]
  • [7] GaAs Core-Shell Nanowires for Photovoltaic Applications
    Czaban, Josef A.
    Thompson, David A.
    LaPierre, Ray R.
    [J]. NANO LETTERS, 2009, 9 (01) : 148 - 154
  • [8] Single-nanowire electrically driven lasers
    Duan, XF
    Huang, Y
    Agarwal, R
    Lieber, CM
    [J]. NATURE, 2003, 421 (6920) : 241 - 245
  • [9] Materials science - Nanowires in nanoelectronics
    Ferry, David K.
    [J]. SCIENCE, 2008, 319 (5863) : 579 - 580
  • [10] Excitonic properties of strained wurtzite and zinc-blende GaN/AlxGa1-xN quantum dots
    Fonoberov, VA
    Balandin, AA
    [J]. JOURNAL OF APPLIED PHYSICS, 2003, 94 (11) : 7178 - 7186