Borell's Formula on a Riemannian Manifold and Applications

被引:1
作者
Lehec, Joseph [1 ]
机构
[1] Univ Paris 09, CEREMADE, UMR CNRS 7534, Pl Lattre de Tassigny, F-75016 Paris, France
来源
CONVEXITY AND CONCENTRATION | 2017年 / 161卷
关键词
ENTROPY; REPRESENTATION; INEQUALITY; BRASCAMP;
D O I
10.1007/978-1-4939-7005-6_9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Borell's formula is a stochastic variational formula for the log-Laplace transform of a function of a Gaussian vector. We establish an extension of this to the Riemannian setting and give a couple of applications, including a new proof of a convolution inequality on the sphere due to Carlen, Lieb and Loss.
引用
收藏
页码:267 / 284
页数:18
相关论文
共 14 条
[1]  
[Anonymous], GRUNDLEHREN MATH WIS
[2]  
[Anonymous], 2002, GRADUATE STUDIES MAT
[3]  
Bakry D., 1994, LECT NOTES MATH, V1581, P1, DOI 10.1007/BFb0073872
[4]   Entropy of spherical marginals and related inequalities [J].
Barthe, F. ;
Cordero-Erausquin, D. ;
Maurey, B. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (02) :89-99
[5]   Correlation and Brascamp-Lieb Inequalities for Markov Semigroups [J].
Barthe, Franck ;
Cordero-Erausquin, Dario ;
Ledoux, Michel ;
Maurey, Bernard .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (10) :2177-2216
[6]   Diffusion equations and geometric inequalities [J].
Borell, C .
POTENTIAL ANALYSIS, 2000, 12 (01) :49-71
[7]  
Boué M, 1998, ANN PROBAB, V26, P1641
[8]   A sharp analog of Young's inequality on SN and related entropy inequalities [J].
Carlen, EA ;
Lieb, EH ;
Loss, M .
JOURNAL OF GEOMETRIC ANALYSIS, 2004, 14 (03) :487-520
[9]  
Chavel I., 1984, Eigenvalues in Riemannian Geometry, V115
[10]   A Riemannian interpolation inequality a la Borell, Brascamp and Lieb [J].
Cordero-Erausquin, D ;
McCann, RJ ;
Schmuckenschläger, M .
INVENTIONES MATHEMATICAE, 2001, 146 (02) :219-257