A Hybrid Autoencoder and Density Estimation Model for Anomaly Detection

被引:80
作者
Cao, Van Loi [1 ]
Nicolau, Miguel [1 ]
McDermott, James [1 ]
机构
[1] Univ Coll Dublin, NCRA Grp, Dublin, Ireland
来源
PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIV | 2016年 / 9921卷
关键词
Anomaly detection; Autoencoder; Density estimation;
D O I
10.1007/978-3-319-45823-6_67
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel one-class learning approach is proposed for network anomaly detection based on combining autoencoders and density estimation. An autoencoder attempts to reproduce the input data in the output layer. The smaller hidden layer becomes a bottleneck, forming a compressed representation of the data. It is now proposed to take low density in the hidden layer as indicating an anomaly. We study two possibilities for modelling density: a single Gaussian, and a full kernel density estimation. The methods are tested on the NSL-KDD dataset, and experiments show that the proposed methods out-perform best-known results on three out of four sub-datasets.
引用
收藏
页码:717 / 726
页数:10
相关论文
共 21 条
[1]  
[Anonymous], 2013, Outlier Analysis, DOI [DOI 10.1007/978-1-4614-6396-2, 10.1007/978-1-4614-6396-2]
[2]  
[Anonymous], 1993, TECHNICAL REPORT
[3]  
Bache K., 2013, UCI Machine Learning Repository
[4]  
Curry R, 2007, IEEE SYS MAN CYBERN, P2517
[5]  
Curry R, 2009, LECT NOTES COMPUT SC, V5481, P1, DOI 10.1007/978-3-642-01181-8_1
[6]  
Duchi J, 2011, J MACH LEARN RES, V12, P2121
[7]   High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning [J].
Erfani, Sarah M. ;
Rajasegarar, Sutharshan ;
Karunasekera, Shanika ;
Leckie, Christopher .
PATTERN RECOGNITION, 2016, 58 :121-134
[8]   Network anomaly detection with the restricted Boltzmann machine [J].
Fiore, Ugo ;
Palmieri, Francesco ;
Castiglione, Aniello ;
De Santis, Alfredo .
NEUROCOMPUTING, 2013, 122 :13-23
[9]  
Hawkins S., 2002, INT C DAT WAR KNOWL, P170, DOI DOI 10.1007/3-540-46145-0_17
[10]   Reducing the dimensionality of data with neural networks [J].
Hinton, G. E. ;
Salakhutdinov, R. R. .
SCIENCE, 2006, 313 (5786) :504-507