Polysaccharides from Grateloupia filicina enhance tolerance of rice seeds (Oryza sativa L.) under salt stress

被引:33
|
作者
Liu, Hong [1 ,2 ,3 ,4 ]
Chen, Xiaolin [1 ,2 ,3 ]
Song, Lin [5 ,6 ]
Li, Kecheng [1 ,2 ,3 ]
Zhang, Xiaoqian [1 ,2 ,3 ,4 ]
Liu, Song [1 ,2 ,3 ]
Qin, Yukun [1 ,2 ,3 ]
Li, Pengcheng [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Oceanol, Key Lab Expt Marine Biol, 7 Nanhai Rd, Qingdao 266071, Peoples R China
[2] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Drugs & Bioprod, Qingdao 266237, Peoples R China
[3] Chinese Acad Sci, Ctr Ocean Mega Sci, Qingdao 266071, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Qingdao Univ Sci & Technol, Coll Marine Sci & Biol Engn, 53 Zhengzhou Rd, Qingdao 266071, Peoples R China
[6] Qingdao Univ Sci & Technol, Coll Marine Sci & Biol Engn, Shandong Prov Key Lab Biochem Engn, Qingdao 266042, Peoples R China
关键词
Grateloupia filicina polysaccharides; Salt stress; Rice seeds; Molecular weight; EXOGENOUS SALICYLIC-ACID; SULFATED POLYSACCHARIDE; DENDROBIUM-OFFICINALE; PROLINE ACCUMULATION; ANTIOXIDANT ENZYMES; GROWTH CHARACTERS; SEAWEED EXTRACTS; DEFENSE SYSTEM; ELICITOR; GERMINATION;
D O I
10.1016/j.ijbiomac.2018.11.270
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rice (Oryza sativa L.) is a salt-sensitive crop which could be suppressed seriously by salt stress at germination stage. Some seaweeds polysaccharides could enhance plants resistance but there is little research about polysaccharides from Grateloupia filicina in agriculture. Therefore, G. filicina polysaccharide (GFP) and low molecular weight (MW) G. filicina polysaccharide (LGFP) were applied to rice seeds under salt stress (GFP: 2093.4 kDa, LGFP-1: 40.8 kDa, LGFP-2: 22.6 kDa, LGFP-3: 5.1 kDa, LGFP-4: 3.0 kDa). Relatively low MW polysaccharides LGFP1-4 showed better effect than GFP, and LGFP-1 showed the best effect on germination potential, germination index, shoot/root length and vigor index than negative control by 26.67, 14.27, 30.50, 202.65 and 162.78%, respectively. Optimum concentration was determined at 0.1 mg/mL, and LGFP-1 increased proline content, superoxide dismutase (SOD) and peroxidase activities (POD) which improved ability of osmotic adjustment and reactive oxygen species (ROS) scavenging. FITC-labeled LGFP-1 (F-LGFP-1) was to investigate the polysaccharide absorption and it was be observed in root and shoot with different distribution. Finally, expression of Na+/H+ antiporter gene was up regulated which suggested LGFP-1 could protect rice seeds by regulating Na+ content. This research showed potential application of polysaccharides from G. filicina for increasing rice seeds salt tolerance. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1197 / 1204
页数:8
相关论文
共 50 条
  • [1] Evaluation of salt tolerance in rice (Oryza sativa L.) under in vitro conditions
    Thamodharan, G.
    Mathankumar, P.
    Veeramani, T.
    CEREAL RESEARCH COMMUNICATIONS, 2024, 52 (03) : 1043 - 1055
  • [2] Rearrangement of nitrogen metabolism in rice (Oryza sativa L.) under salt stress
    Xu, Jianwen
    Huang, Xi
    Lan, Hongxia
    Zhang, Hongsheng
    Huang, Ji
    PLANT SIGNALING & BEHAVIOR, 2016, 11 (03)
  • [3] Hydrogen peroxide is involved in the regulation of rice (Oryza sativa L.) tolerance to salt stress
    Wang, Xiaomin
    Hou, Chen
    Liu, Jie
    He, Wenliang
    Nan, Wenbin
    Gong, Huiling
    Bi, Yurong
    ACTA PHYSIOLOGIAE PLANTARUM, 2013, 35 (03) : 891 - 900
  • [4] Hydrogen peroxide is involved in the regulation of rice (Oryza sativa L.) tolerance to salt stress
    Xiaomin Wang
    Chen Hou
    Jie Liu
    Wenliang He
    Wenbin Nan
    Huiling Gong
    Yurong Bi
    Acta Physiologiae Plantarum, 2013, 35 : 891 - 900
  • [5] Identification of salt-tolerance QTL in rice(Oryza sativa L.)
    GONG Jiming HE Ping QIAN Qian SHEN Lishuang
    China National Rice Research Institute
    ChineseScienceBulletin, 1999, (01) : 68 - 71
  • [6] Identification of salt-tolerance QTL in rice (Oryza sativa L.)
    Gong, JM
    He, P
    Qian, QA
    Shen, LS
    Zhu, LH
    Chen, SY
    CHINESE SCIENCE BULLETIN, 1999, 44 (01): : 68 - 71
  • [7] Parameters Utilized in Screening for Salt Tolerance in Rice (Oryza Sativa L.).
    Sankar, Deepa P.
    RESEARCH JOURNAL OF PHARMACEUTICAL BIOLOGICAL AND CHEMICAL SCIENCES, 2016, 7 (02): : 430 - 435
  • [8] Salt stress induces oxidative stress in rice (Oryza sativa L.), relationships between antioxidative enzymes activities and salt tolerance
    Thu, HNT
    Shim, IS
    Kobayashi, K
    Usui, K
    PLANT AND CELL PHYSIOLOGY, 2004, 45 : S57 - S57
  • [9] Overexpression of miR1861h increases tolerance to salt stress in rice (Oryza sativa L.)
    Ai, Bin
    Chen, Yong
    Zhao, Minmin
    Ding, Gumu
    Xie, Jiankun
    Zhang, Fantao
    GENETIC RESOURCES AND CROP EVOLUTION, 2021, 68 (01) : 87 - 92
  • [10] Inducing salt tolerance in rice (Oryza sativa L.) varieties by gamma radiation
    Ayan, Alp
    Celik, Ozge
    Meric, Sinan
    Atak, Cimen
    JOURNAL OF BIOTECHNOLOGY, 2017, 256 : S103 - S104