The determining number of Kneser graphs

被引:0
|
作者
Caceres, Jose [1 ]
Garijo, Delia [2 ]
Gonzalez, Antonio [2 ]
Marquez, Alberto [2 ]
Luiz Puertas, Maria [1 ]
机构
[1] Univ Almeria, Dept Stat & Appl Math, Almeria, Spain
[2] Univ Seville, Dept Appl Math 1, Seville, Spain
关键词
Determining set; determining number; Kneser graph; hypergraph; BASE SIZE;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A set of vertices S is a determining set of a graph G if every automorphism of G is uniquely determined by its action on S. The determining number of G is the minimum cardinality of a determining set of G. This paper studies the determining number of Kneser graphs. First, we compute the determining number of a wide range of Kneser graphs, concretely K-n:k with n >= k(k + 1)/2 + 1. In the language of group theory, these computations provide exact values for the base size of the symmetric group S-n acting on the k-subsets of {1,...,n}. Then, we establish for which Kneser graphs K n : k the determining number is equal to n - k, answering a question posed by Boutin. Finally, we find all Kneser graphs with fixed determining number 5, extending the study developed by Boutin for determining number 2, 3 or 4.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [21] b-coloring of Kneser graphs
    Balakrishnan, R.
    Kavaskar, T.
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (1-2) : 9 - 14
  • [22] On finite simple groups and Kneser graphs
    Andrea Lucchini
    Attila Maróti
    Journal of Algebraic Combinatorics, 2009, 30 : 549 - 566
  • [23] A NOTE ON FALL COLORINGS OF KNESER GRAPHS
    Shaebani, Saeed
    TRANSACTIONS ON COMBINATORICS, 2019, 8 (03) : 13 - +
  • [24] On finite simple groups and Kneser graphs
    Lucchini, Andrea
    Maroti, Attila
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2009, 30 (04) : 549 - 566
  • [25] CLAW-DECOMPOSITION OF KNESER GRAPHS
    Sankari, C.
    Sangeetha, R.
    Arthi, K.
    TRANSACTIONS ON COMBINATORICS, 2022, 11 (01) : 53 - 61
  • [26] Kneser Graphs are like Swiss Cheese
    Friedgut, Ehud
    Regev, Oded
    DISCRETE ANALYSIS, 2018, : 1 - 18
  • [27] A note on b-coloring of Kneser graphs
    Shaebani, Saeed
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 368 - 369
  • [28] Cutoff phenomenon for random walks on Kneser graphs
    Pourmiri, Ali
    Sauerwald, Thomas
    DISCRETE APPLIED MATHEMATICS, 2014, 176 : 100 - 106
  • [29] Neighbour-transitive codes in Kneser graphs
    Crnkovic, Dean
    Hawtin, Daniel R.
    Mostarac, Nina
    Svob, Andrea
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 204
  • [30] Hadwiger's Conjecture for the Complements of Kneser Graphs
    Xu, Guangjun
    Zhou, Sanming
    JOURNAL OF GRAPH THEORY, 2017, 84 (01) : 5 - 16