SUFFICIENT CONDITIONS FOR 2-NILPOTENCE OF A FINITE GROUP

被引:1
作者
Berkovich, Yakov [1 ]
机构
[1] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
关键词
Minimal nilpotent groups; Minimal nonabelian 2-subgroups; 2-nilpotent groups; FIXED ELEMENTS;
D O I
10.1142/S0219498812501873
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that if any cyclic 2'-subgroup of a finite group G centralizes all real 2-elements of order <= 4, then G is 2-nilpotent (Theorem 1). Some related results are proved. Minimal nonnilpotent groups and minimal nonabelian 2-groups play important role in our proof of those results.
引用
收藏
页数:7
相关论文
共 9 条
[1]  
Berkovich Y, 2008, DEGRUYTER EXPOS MATH, V46, P1, DOI 10.1515/9783110208221
[2]  
BERKOVICH Y, 1998, CHARACTERS FINITE 1
[3]  
Berkovich Y., 2008, EXPOSITIONS MATH, V47
[4]   A p-nilpotency criterion [J].
Gonzalez-Sanchez, Jon .
ARCHIV DER MATHEMATIK, 2010, 94 (03) :201-205
[5]  
Huppert B., 1967, Endliche Gruppen I
[6]   Normal p-complements and fixed elements [J].
Isaacs, I. M. ;
Navarro, Gabriel .
ARCHIV DER MATHEMATIK, 2010, 95 (03) :207-211
[7]  
Isaacs I.M., 1994, ALGEBRA GRADUATE COU
[8]   Fixed elements in 2-groups revisited [J].
Marciniak, Zbigniew .
ARCHIV DER MATHEMATIK, 2011, 97 (03) :207-208
[9]  
Redei L., 1947, COMMENT MATH HELV, V20, P225