Multisite generalizability of schizophrenia diagnosis classification based on functional brain connectivity

被引:39
作者
Orban, Pierre [1 ,2 ,3 ]
Dansereau, Christian [1 ,4 ]
Desbois, Laurence [2 ]
Mongeau-Perusse, Violaine [2 ]
Giguere, Charles-Edouard [2 ]
Hien Nguyen [5 ]
Mendrek, Adrianna [2 ,6 ]
Stip, Emmanuel [2 ,3 ,7 ]
Bellec, Pierre [1 ,4 ]
机构
[1] Inst Univ Geriatrie Montreal, Ctr Rech, Montreal, PQ, Canada
[2] Inst Univ Sante Mentale Montreal, Ctr Rech, 7331 Hochelaga, Montreal, PQ H1N 3V2, Canada
[3] Univ Montreal, Dept Psychiat, Montreal, PQ, Canada
[4] Univ Montreal, Dept Informat & Rech Operat, Montreal, PQ, Canada
[5] La Trobe Univ, Dept Math & Stat, Bundoora, Vic, Australia
[6] Bishops Univ, Dept Psychol, Sherbrooke, PQ, Canada
[7] Univ Montreal, Ctr Hosp, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
Schizophrenia; fMRI; Machine learning; Classification; Multisite; Cognition; LARGE-SCALE INTEGRATION; SCHIZCONNECT; DEPRESSION; BIOMARKERS; PSYCHIATRY; NETWORK;
D O I
10.1016/j.schres.2017.05.027
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Our objective was to assess the generalizability, across sites and cognitive contexts, of schizophrenia classification based on functional brain connectivity. We tested different training-test scenarios combining fMRI data from 191 schizophrenia patients and 191 matched healthy controls obtained at 6 scanning sites and under different task conditions. Diagnosis classification accuracy generalized well to a novel site and cognitive context provided data from multiple sites were used for classifier training. By contrast, lower classification accuracy was achieved when data from a single distinct site was used for training. These findings indicate that it is beneficial to use multisite data to train BARI-based classifiers intended for large-scale use in the clinical realm. (C) 2017 Published by Elsevier B.V.
引用
收藏
页码:167 / 171
页数:5
相关论文
共 24 条
  • [11] Organizing Heterogeneous Samples Using Community Detection of GIMME-Derived Resting State Functional Networks
    Gates, Kathleen M.
    Molenaar, Peter C. M.
    Iyer, Swathi P.
    Nigg, Joel T.
    Fair, Damien A.
    [J]. PLOS ONE, 2014, 9 (03):
  • [12] The MCIC Collection: A Shared Repository of Multi-Modal, Multi-Site Brain Image Data from a Clinical Investigation of Schizophrenia
    Gollub, Randy L.
    Shoemaker, Jody M.
    King, Margaret D.
    White, Tonya
    Ehrlich, Stefan
    Sponheim, Scott R.
    Clark, Vincent P.
    Turner, Jessica A.
    Mueller, Bryon A.
    Magnotta, Vince
    O'Leary, Daniel
    Ho, Beng C.
    Brauns, Stefan
    Manoach, Dara S.
    Seidman, Larry
    Bustillo, Juan R.
    Lauriello, John
    Bockholt, Jeremy
    Lim, Kelvin O.
    Rosen, Bruce R.
    Schulz, S. Charles
    Calhoun, Vince D.
    Andreasen, Nancy C.
    [J]. NEUROINFORMATICS, 2013, 11 (03) : 367 - 388
  • [13] On the generalizability of resting-state fMRI machine learning classifiers
    Huf, Wolfgang
    Kalcher, Klaudius
    Boubela, Roland N.
    Rath, Georg
    Vecsei, Andreas
    Filzmoser, Peter
    Moser, Ewald
    [J]. FRONTIERS IN HUMAN NEUROSCIENCE, 2014, 8
  • [14] Computational psychiatry as a bridge from neuroscience to clinical applications
    Huys, Quentin J. M.
    Maia, Tiago V.
    Frank, Michael J.
    [J]. NATURE NEUROSCIENCE, 2016, 19 (03) : 404 - 413
  • [15] Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it?
    Kapur, S.
    Phillips, A. G.
    Insel, T. R.
    [J]. MOLECULAR PSYCHIATRY, 2012, 17 (12) : 1174 - 1179
  • [16] Task modulations and clinical manifestations in the brain functional connectome in 1615 fMRI datasets
    Kaufmann, Tobias
    Alnaes, Dag
    Brandt, Christine Lycke
    Nhat Trung Doan
    Kauppi, Karolina
    Bettella, Francesco
    Lagerberg, Trine V.
    Berg, Akiah O.
    Djurovic, Srdjan
    Agartz, Ingrid
    Melle, Ingrid S.
    Ueland, Torill
    Andreassen, Ole A.
    Westlye, Lars T.
    [J]. NEUROIMAGE, 2017, 147 : 243 - 252
  • [17] Northwestern University schizophrenia data sharing for SchizConnect: A longitudinal dataset for large-scale integration
    Kogan, Alex
    Alpert, Kathryn
    Ambite, Jose Luis
    Marcus, Daniel S.
    Wang, Lei
    [J]. NEUROIMAGE, 2016, 124 : 1196 - 1201
  • [18] Altered brain connectivity in patients with schizophrenia is consistent across cognitive contexts
    Orban, Pierre
    Desseilles, Martin
    Mendrek, Adrianna
    Bourque, Josiane
    Bellec, Pierre
    Stip, Emmanuel
    [J]. JOURNAL OF PSYCHIATRY & NEUROSCIENCE, 2017, 42 (01): : 17 - 26
  • [19] Dysconnectivity in schizophrenia: Where are we now?
    Pettersson-Yeo, William
    Allen, Paul
    Benetti, Stefania
    McGuire, Philip
    Mechelli, Andrea
    [J]. NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2011, 35 (05) : 1110 - 1124
  • [20] Poldrack R. A., 2016, SCI DATA, V49, P3