Multisite generalizability of schizophrenia diagnosis classification based on functional brain connectivity

被引:39
作者
Orban, Pierre [1 ,2 ,3 ]
Dansereau, Christian [1 ,4 ]
Desbois, Laurence [2 ]
Mongeau-Perusse, Violaine [2 ]
Giguere, Charles-Edouard [2 ]
Hien Nguyen [5 ]
Mendrek, Adrianna [2 ,6 ]
Stip, Emmanuel [2 ,3 ,7 ]
Bellec, Pierre [1 ,4 ]
机构
[1] Inst Univ Geriatrie Montreal, Ctr Rech, Montreal, PQ, Canada
[2] Inst Univ Sante Mentale Montreal, Ctr Rech, 7331 Hochelaga, Montreal, PQ H1N 3V2, Canada
[3] Univ Montreal, Dept Psychiat, Montreal, PQ, Canada
[4] Univ Montreal, Dept Informat & Rech Operat, Montreal, PQ, Canada
[5] La Trobe Univ, Dept Math & Stat, Bundoora, Vic, Australia
[6] Bishops Univ, Dept Psychol, Sherbrooke, PQ, Canada
[7] Univ Montreal, Ctr Hosp, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
Schizophrenia; fMRI; Machine learning; Classification; Multisite; Cognition; LARGE-SCALE INTEGRATION; SCHIZCONNECT; DEPRESSION; BIOMARKERS; PSYCHIATRY; NETWORK;
D O I
10.1016/j.schres.2017.05.027
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Our objective was to assess the generalizability, across sites and cognitive contexts, of schizophrenia classification based on functional brain connectivity. We tested different training-test scenarios combining fMRI data from 191 schizophrenia patients and 191 matched healthy controls obtained at 6 scanning sites and under different task conditions. Diagnosis classification accuracy generalized well to a novel site and cognitive context provided data from multiple sites were used for classifier training. By contrast, lower classification accuracy was achieved when data from a single distinct site was used for training. These findings indicate that it is beneficial to use multisite data to train BARI-based classifiers intended for large-scale use in the clinical realm. (C) 2017 Published by Elsevier B.V.
引用
收藏
页码:167 / 171
页数:5
相关论文
共 24 条
  • [1] Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example
    Abraham, Alexandre
    Milham, Michael P.
    Di Martino, Adriana
    Craddock, R. Cameron
    Samaras, Dimitris
    Thirion, Bertrand
    Varoquaux, Gael
    [J]. NEUROIMAGE, 2017, 147 : 736 - 745
  • [2] Machine learning for neuroirnaging with scikit-learn
    Abraham, Alexandre
    Pedregosa, Fabian
    Eickenberg, Michael
    Gervais, Philippe
    Mueller, Andreas
    Kossaifi, Jean
    Gramfort, Alexandre
    Thirion, Bertrand
    Varoquaux, Gael
    [J]. FRONTIERS IN NEUROINFORMATICS, 2014, 8
  • [3] Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls
    Arbabshirani, Mohammad R.
    Plis, Sergey
    Sui, Jing
    Calhoun, Vince D.
    [J]. NEUROIMAGE, 2017, 145 : 137 - 165
  • [4] Multi-level bootstrap analysis of stable clusters in resting-state fMRI
    Bellec, Pierre
    Rosa-Neto, Pedro
    Lyttelton, Oliver C.
    Benali, Habib
    Evans, Alan C.
    [J]. NEUROIMAGE, 2010, 51 (03) : 1126 - 1139
  • [5] Thalamus and posterior temporal lobe show greater inter-network connectivity at rest and across sensory paradigms in schizophrenia
    Cetin, Mustafa S.
    Christensen, Fletcher
    Abbott, Christopher C.
    Stephen, Julia M.
    Mayer, Andrew R.
    Canive, Jose M.
    Bustillo, Juan R.
    Pearlson, Godfrey D.
    Calhoun, Vince D.
    [J]. NEUROIMAGE, 2014, 97 : 117 - 126
  • [6] Voxel-based, brain-wide association study of aberrant functional connectivity in schizophrenia implicates thalamocortical circuitry
    Cheng W.
    Palaniyappan L.
    Li M.
    Kendrick K.M.
    Zhang J.
    Luo Q.
    Liu Z.
    Yu R.
    Deng W.
    Wang Q.
    Ma X.
    Guo W.
    Francis S.
    Liddle P.
    Mayer A.R.
    Schumann G.
    Li T.
    Feng J.
    [J]. npj Schizophrenia, 1 (1):
  • [7] Statistical power and prediction accuracy in multisite resting-state fMRI connectivity
    Dansereau, Christian
    Benhajali, Yassine
    Risterucci, Celine
    Pich, Emilio Merlo
    Orban, Pierre
    Arnold, Douglas
    Bellec, Pierre
    [J]. NEUROIMAGE, 2017, 149 : 220 - 232
  • [8] Characterizing heterogeneity in children with and without ADHD based on reward system connectivity
    Dias, Taciana G. Costa
    Iyer, Swathi P.
    Carpenter, Samuel D.
    Cary, Robert P.
    Wilson, Vanessa B.
    Mitchell, Suzanne H.
    Nigg, Joel T.
    Fair, Damien A.
    [J]. DEVELOPMENTAL COGNITIVE NEUROSCIENCE, 2015, 11 : 155 - 174
  • [9] Resting-state connectivity biomarkers define neurophysiological subtypes of depression
    Drysdale, Andrew T.
    Grosenick, Logan
    Downar, Jonathan
    Dunlop, Katharine
    Mansouri, Farrokh
    Meng, Yue
    Fetcho, Robert N.
    Zebley, Benjamin
    Oathes, Desmond J.
    Etkin, Amit
    Schatzberg, Alan F.
    Sudheimer, Keith
    Keller, Jennifer
    Mayberg, Helen S.
    Gunning, Faith M.
    Alexopoulos, George S.
    Fox, Michael D.
    Pascual-Leone, Alvaro
    Voss, Henning U.
    Casey, B. J.
    Dubin, Marc J.
    Liston, Conor
    [J]. NATURE MEDICINE, 2017, 23 (01) : 28 - 38
  • [10] Building a Science of Individual Differences from fMRI
    Dubois, Julien
    Adolphs, Ralph
    [J]. TRENDS IN COGNITIVE SCIENCES, 2016, 20 (06) : 425 - 443