Multiplex Genome Engineering for Optimizing Bioproduction in Saccharomyces cerevisiae

被引:10
作者
Auxillos, Jamie Y. [1 ,2 ]
Garcia-Ruiz, Eva [1 ]
Jones, Sally [1 ]
Li, Tianyi [3 ]
Jiang, Shuangying [3 ]
Dai, Junbiao [3 ]
Cai, Yizhi [1 ]
机构
[1] Univ Manchester, MIB, Sch Chem, 131 Princess St, Manchester M1 7DN, Lancs, England
[2] Univ Edinburgh, Sch Biol Sci, Kings Bldg, Edinburgh EH9 3JY, Midlothian, Scotland
[3] Chinese Acad Sci, Ctr Synthet Genom, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
基金
英国生物技术与生命科学研究理事会; 比尔及梅琳达.盖茨基金会;
关键词
NATURAL-PRODUCTS; YEAST; RIBOSWITCHES; BIOSYNTHESIS; CONSTRUCTION; DIVERSITY; BIOSENSOR; SYSTEM; CELLS;
D O I
10.1021/acs.biochem.8b01086
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The field of synthetic biology is already beginning to realize its potential, with a wealth of examples showcasing the successful genetic engineering of microorganisms for the production of valuable compounds. The chassis Saccharomyces cerevisiae has been engineered to function as a microfactory for producing many of these economically and medically relevant compounds. However, strain construction and optimization to produce industrially relevant titers necessitate a wealth of underpinning biological knowledge alongside large investments of capital and time. Over the past decade, advances in DNA synthesis and editing tools have enabled multiplex genome engineering of yeast, permitting access to more complex modifications that could not have been easily generated in the past. These genome engineering efforts often result in large populations of strains with genetic diversity that can pose a significant challenge to screen individually via traditional methods such as mass spectrometry. The large number of samples generated would necessitate screening methods capable of analyzing all of the strains generated to maximize the explored genetic space. In this Perspective, we focus on recent innovations in multiplex genome engineering of S. cerevisiae, together with biosensors and high-throughput screening tools, such as droplet microfluidics, and their applications in accelerating chassis optimization.
引用
收藏
页码:1492 / 1500
页数:9
相关论文
共 69 条
[1]   RNA-aptamers-in-droplets (RAPID) high-throughput screening for secretory phenotypes [J].
Abatemarco, Joseph ;
Sarhan, Maen F. ;
Wagner, James M. ;
Lin, Jyun-Liang ;
Liu, Leqian ;
Hassouneh, Wafa ;
Yuan, Shuo-Fu ;
Alper, Hal S. ;
Abate, Adam R. .
NATURE COMMUNICATIONS, 2017, 8
[2]   Ultrahigh-throughput screening in drop-based microfluidics for directed evolution [J].
Agresti, Jeremy J. ;
Antipov, Eugene ;
Abate, Adam R. ;
Ahn, Keunho ;
Rowat, Amy C. ;
Baret, Jean-Christophe ;
Marquez, Manuel ;
Klibanov, Alexander M. ;
Griffiths, Andrew D. ;
Weitz, David A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (09) :4004-4009
[3]   Formation of dispersions using "flow focusing" in microchannels [J].
Anna, SL ;
Bontoux, N ;
Stone, HA .
APPLIED PHYSICS LETTERS, 2003, 82 (03) :364-366
[4]   Total Synthesis of a Functional Designer Eukaryotic Chromosome [J].
Annaluru, Narayana ;
Muller, Heloise ;
Mitchell, Leslie A. ;
Ramalingam, Sivaprakash ;
Stracquadanio, Giovanni ;
Richardson, Sarah M. ;
Dymond, Jessica S. ;
Kuang, Zheng ;
Scheifele, Lisa Z. ;
Cooper, Eric M. ;
Cai, Yizhi ;
Zeller, Karen ;
Agmon, Neta ;
Han, Jeffrey S. ;
Hadjithomas, Michalis ;
Tullman, Jennifer ;
Caravelli, Katrina ;
Cirelli, Kimberly ;
Guo, Zheyuan ;
London, Viktoriya ;
Yeluru, Apurva ;
Murugan, Sindurathy ;
Kandavelou, Karthikeyan ;
Agier, Nicolas ;
Fischer, Gilles ;
Yang, Kun ;
Martin, J. Andrew ;
Bilgel, Murat ;
Bohutski, Pavlo ;
Boulier, Kristin M. ;
Capaldo, Brian J. ;
Chang, Joy ;
Charoen, Kristie ;
Choi, Woo Jin ;
Deng, Peter ;
DiCarlo, James E. ;
Doong, Judy ;
Dunn, Jessilyn ;
Feinberg, Jason I. ;
Fernandez, Christopher ;
Floria, Charlotte E. ;
Gladowski, David ;
Hadidi, Pasha ;
Ishizuka, Isabel ;
Jabbari, Javaneh ;
Lau, Calvin Y. L. ;
Lee, Pablo A. ;
Li, Sean ;
Lin, Denise ;
Linder, Matthias E. .
SCIENCE, 2014, 344 (6179) :55-58
[5]   Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision [J].
Bao, Zehua ;
HamediRad, Mohammad ;
Xue, Pu ;
Xiao, Han ;
Tasan, Ipek ;
Chao, Ran ;
Liang, Jing ;
Zhao, Huimin .
NATURE BIOTECHNOLOGY, 2018, 36 (06) :505-+
[6]   Homology-Integrated CRISPR-Cas (HI-CRISPR) System for One-Step Multigene Disruption in Saccharomyces cerevisiae [J].
Bao, Zehua ;
Xiao, Han ;
Lang, Jing ;
Zhang, Lu ;
Xiong, Xiong ;
Sun, Ning ;
Si, Tong ;
Zhao, Huimin .
ACS SYNTHETIC BIOLOGY, 2015, 4 (05) :585-594
[7]   Precise Editing at DNA Replication Forks Enables Multiplex Genome Engineering in Eukaryotes [J].
Barbieri, Edward M. ;
Muir, Paul ;
Akhuetie-Oni, Benjamin O. ;
Yellman, Christopher M. ;
Isaacs, Farren J. .
CELL, 2017, 171 (06) :1453-+
[8]   Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity [J].
Baret, Jean-Christophe ;
Miller, Oliver J. ;
Taly, Valerie ;
Ryckelynck, Michael ;
El-Harrak, Abdeslam ;
Frenz, Lucas ;
Rick, Christian ;
Samuels, Michael L. ;
Hutchison, J. Brian ;
Agresti, Jeremy J. ;
Link, Darren R. ;
Weitz, David A. ;
Griffiths, Andrew D. .
LAB ON A CHIP, 2009, 9 (13) :1850-1858
[9]   Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome [J].
Blount, B. A. ;
Gowers, G-O. F. ;
Ho, J. C. H. ;
Ledesma-Amaro, R. ;
Jovicevic, D. ;
McKiernan, R. M. ;
Xie, Z. X. ;
Li, B. Z. ;
Yuan, Y. J. ;
Ellis, T. .
NATURE COMMUNICATIONS, 2018, 9
[10]   Recent advances in DNA assembly technologies [J].
Chao, Ran ;
Yuan, Yongbo ;
Zhao, Huimin .
FEMS YEAST RESEARCH, 2015, 15 (01)