Analysis of a Micro Gas Turbine Fed by Natural Gas and Synthesis Gas: MGT Test Bench and Combustor CFD Analysis

被引:48
作者
Cadorin, M. [1 ]
Pinelli, M. [1 ]
Vaccari, A. [1 ]
Calabria, R. [2 ]
Chiariello, F. [2 ]
Massoli, P. [2 ]
Bianchi, E. [3 ]
机构
[1] Univ Ferrara, Dipartimento Ingn, I-44122 Ferrara, Italy
[2] CNR, Ist Motori, I-80125 Naples, Italy
[3] Turbec SpA, I-44040 Corporeno Di Cento, FE, Italy
来源
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME | 2012年 / 134卷 / 07期
关键词
D O I
10.1115/1.4005977
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In recent years, the interest in the research on energy production systems fed by biofuels has increased. Gaseous fuels obtained through biomass conversion processes such as gasification, pyrolysis and pyrogasification are generally defined as synthesis gas (syngas). The use of synthesis gas in small-size energy systems, such as those used for distributed micro-cogeneration, has not yet reached a level of technological maturity that could allow a large market diffusion. For this reason, further analyses (both experimental and numerical) have to be carried out to allow these technologies to achieve performance and reliability typical of established technologies based on traditional fuels. In this paper, a numerical analysis of a combustor of a 100-kW micro gas turbine fed by natural gas and biomass-derived synthesis gas is presented. The work has been developed in the framework of a collaboration between the Engineering Department of the University of Ferrara, the Istituto Motori - CNR (Napoli), and Turbec S.p A. of Corporeno di Cento (FE). The main features of the micro gas turbine Turbec T100, located at the Istituto Motori - CNR, are firstly described. A decompression and distribution system allows the feeding of the micro gas turbine with gaseous fuels characterized by different compositions. Moreover, a system of remote monitoring and control together with a data transfer system has been developed in order to set the operative parameters of the machine. The results of the tests performed under different operating conditions are then presented. Subsequently, the paper presents the numerical analysis of a model of the micro gas turbine combustor. The combustor model is validated against manufacturer performance data and experimental data with respect to steady state performance, i.e., average outlet temperature and emission levels. A sensitivity analysis on the model capability to simulate different operating conditions is then performed. The combustor model is used to simulate the combustion of a syngas, composed of different ratios of hydrogen, carbon monoxide, methane, carbon dioxide and water. The results in terms of flame displacement, temperature and emission distribution and values are analyzed and compared to the natural gas simulations. Finally, some simple modifications to the combustion chamber are proposed and simulated both with natural gas and syngas feeding. [DOI: 10.1115/1.4005977]
引用
收藏
页数:11
相关论文
共 22 条
  • [11] Ferguson D., 2008, GT200851261 ASME
  • [12] Gillette S., 2008, GT200851365 ASME
  • [13] Gas cleaning for IC engine applications from fixed bed biomass gasification
    Hasler, P
    Nussbaumer, T
    [J]. BIOMASS & BIOENERGY, 1999, 16 (06) : 385 - 395
  • [14] Hoppesteyn P. D. J., 1999, THESIS DELFT U DELFT
  • [15] GLOBAL REACTION SCHEMES FOR HYDROCARBON COMBUSTION
    JONES, WP
    LINDSTEDT, RP
    [J]. COMBUSTION AND FLAME, 1988, 73 (03) : 233 - 249
  • [16] Lefebvre A.H., 1999, GAS TURBINE COMBUSTI
  • [17] Fuel flexibility influences on premixed combustor blowout, flashback autoignition and stability
    Lieuwen, Tim
    McDonell, Vince
    Petersen, Eric
    Santavicca, Domenic
    [J]. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2008, 130 (01):
  • [18] Magnussen F., 1976, P 16 S INT COMB
  • [19] Prussi M., 2008, GT200850236 ASME
  • [20] Turns StephenR., 1996, INTRO COMBUSTION