On heat conductors with a stationary hot spot

被引:11
|
作者
Magnanini, Rolando [1 ]
Sakaguchi, Shigeru [2 ]
机构
[1] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
[2] Ehime Univ, Fac Sci, Dept Math Sci, Matsuyama, Ehime 7908577, Japan
基金
日本学术振兴会;
关键词
heat equation; convex bodies; hot spots; stationary critical point;
D O I
10.1007/s10231-003-0077-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a heat conductor having initial constant temperature and zero boundary temperature at every time. The hot spot is the point at which temperature attains its maximum at each given time. For convex conductors, if the hot spot does not move in time, we prove symmetry results for planar triangular and quadrangular conductors. Then, we examine the case of a general conductor and, by an asymptotic formula, we prove that, if there is a stationary critical point, not necessarily the hot spot, then the conductor must satisfy a geometric condition. In particular, we show that there is no stationary critical point inside planar non-convex quadrangular conductors.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [21] THE SHOCK-TRIGGERED STATISTICAL HOT SPOT MODEL
    Hill, Larry G.
    SHOCK COMPRESSION OF CONDENSED MATTER - 2011, PTS 1 AND 2, 2012, 1426
  • [22] A Metric Comparison of Predictive Hot Spot Techniques and RTM
    Drawve, Grant
    JUSTICE QUARTERLY, 2016, 33 (03) : 369 - 397
  • [23] Io Hot Spot Distribution Detected by Juno/JIRAM
    Zambon, F.
    Mura, A.
    Lopes, R. M. C.
    Rathbun, J.
    Tosi, F.
    Sordini, R.
    Noschese, R.
    Ciarniello, M.
    Cicchetti, A.
    Adriani, A.
    Agostini, L.
    Filacchione, G.
    Grassi, D.
    Piccioni, G.
    Plainaki, C.
    Sindoni, G.
    Turrini, D.
    Brooks, S.
    Hansen-Koharcheck, C.
    Bolton, S.
    GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (01)
  • [24] Hot spots of solutions to the heat equation with inverse square potential
    Ishige, Kazuhiro
    Kabeya, Yoshitsugu
    Mukai, Asato
    APPLICABLE ANALYSIS, 2019, 98 (10) : 1843 - 1861
  • [25] New 40Ar/39Ar age progression for the Louisville hot spot trail and implications for inter-hot spot motion
    Koppers, Anthony A. P.
    Gowen, Molly D.
    Colwell, Lauren E.
    Gee, Jeffrey S.
    Lonsdale, Peter F.
    Mahoney, John J.
    Duncan, Robert A.
    GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2011, 12
  • [26] An outdoor investigation of the absorption degradation of single-junction amorphous silicon photovoltaic module due to localized heat/hot spot formation
    GILBERT O OSAYEMWENRE
    EDSON L MEYER
    SAMPSON MAMPHWELI
    Pramana, 2016, 86 : 901 - 909
  • [27] An outdoor investigation of the absorption degradation of single-junction amorphous silicon photovoltaic module due to localized heat/hot spot formation
    Osayemwenre, Gilbert O.
    Meyer, Edson L.
    Mamphweli, Sampson
    PRAMANA-JOURNAL OF PHYSICS, 2016, 86 (04): : 901 - 909
  • [28] Stationary critical points of the heat flow in the plane
    Magnanini, R
    Sakaguchi, S
    JOURNAL D ANALYSE MATHEMATIQUE, 2002, 88 (1): : 383 - 396
  • [29] Analysis of Parallel Microchannels for Flow Control and Hot Spot Cooling
    Solovitz, Stephen A.
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2013, 5 (04)
  • [30] Advanced aspects of electromagnetic SERS enhancement factors at a hot spot
    Le Ru, E. C.
    Meyer, M.
    Blackie, E.
    Etchegoin, P. G.
    JOURNAL OF RAMAN SPECTROSCOPY, 2008, 39 (09) : 1127 - 1134