Approximation Properties Of (p, q)-Variant Of Stancu-Schurer Operators

被引:5
作者
Wafi, Abdul [1 ]
Rao, Nadeem [1 ]
Deepmala [2 ]
机构
[1] Jamia Millia Islamia, Dept Math, New Delhi 110025, India
[2] PDPM Indian Inst Informat Technol Design & Mfg, Math Discipline, Dumna Airport Rd,PO Khanzaria, Jabalpur 482005, Madhya Pradesh, India
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2019年 / 37卷 / 04期
关键词
(p; q)-Integers; q)-Bernstein Operators; q)-Stancu-Schurer; BERNSTEIN; Q)-ANALOG;
D O I
10.5269/bspm.v37i4.35852
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we introduce (p, q)-variant of Stancu-Schurer operators and discuss the rate of convergence for continuous functions. Further, We discuss recursive estimates, Korovkin-type theorems and direct approximation results using second order modulus of continuity, Peetre's K-functional and Lipschitz class.
引用
收藏
页码:137 / 151
页数:15
相关论文
共 19 条
[1]   (p,q)-Generalization of Szasz-Mirakyan operators [J].
Acar, Tuncer .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (10) :2685-2695
[2]   On q-analogue of Bernstein-Schurer-Stancu operators [J].
Agrawal, P. N. ;
Gupta, Vijay ;
Kumar, A. Sathish .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (14) :7754-7764
[3]  
[Anonymous], STUD U BABES BOLYAI
[4]  
[Anonymous], 1953, MATH EXPOSITIONS
[5]  
[Anonymous], 2004, DEMONSTR MATH
[6]  
[Anonymous], ARXIV150405887MATHCA
[7]  
[Anonymous], 1987, Seminar on numerical and statistical calculus
[8]  
[Anonymous], FILOMAT
[9]  
[Anonymous], FILOMAT
[10]  
Bernstein S.N., 1913, Comm. Soc. Math. Kharkow, V13, P1