Dark solitons of the power-energy saturation model: application to mode-locked lasers

被引:12
作者
Ablowitz, M. J. [1 ]
Nixon, S. D. [2 ]
Horikis, T. P. [3 ]
Frantzeskakis, D. J. [4 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Univ Vermont, Dept Math & Stat, Burlington, VT 05401 USA
[3] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
[4] Univ Athens, Dept Phys, Athens 15784, Greece
基金
美国国家科学基金会;
关键词
GINZBURG-LANDAU EQUATION; DOMAIN-WALL SOLITONS; FIBER RING LASER; PERTURBATION-THEORY; NORMAL DISPERSION; SPATIAL SOLITONS; WAVE-GUIDES; GENERATION; TRANSMISSION; DYNAMICS;
D O I
10.1088/1751-8113/46/9/095201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The generation and dynamics of dark solitons in mode-locked lasers is studied within the framework of a nonlinear Schrodinger equation which incorporates power-saturated loss, as well as energy-saturated gain and filtering. Mode-locking into single dark solitons and multiple dark pulses are found by employing different descriptions for the energy and power of the system defined over unbounded and periodic (ring laser) systems. Treating the loss, gain and filtering terms as perturbations, it is shown that these terms induce an expanding shelf around the soliton. The dark soliton dynamics are studied analytically by means of a perturbation method that takes into regard the emergence of the shelves and reveals their importance.
引用
收藏
页数:18
相关论文
共 54 条
  • [1] Perturbations of dark solitons
    Ablowitz, M. J.
    Nixon, S. D.
    Horikis, T. P.
    Frantzeskakis, D. J.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2133): : 2597 - 2621
  • [2] Dark solitons in mode-locked lasers
    Ablowitz, Mark J.
    Horikis, Theodoros P.
    Nixon, Sean D.
    Frantzeskakis, Dimitri J.
    [J]. OPTICS LETTERS, 2011, 36 (06) : 793 - 795
  • [3] Solitons in normally dispersive mode-locked lasers
    Ablowitz, Mark J.
    Horikis, Theodoros P.
    [J]. PHYSICAL REVIEW A, 2009, 79 (06):
  • [4] Pulse dynamics and solitons in mode-locked lasers
    Ablowitz, Mark J.
    Horikis, Theodoros P.
    [J]. PHYSICAL REVIEW A, 2008, 78 (01):
  • [5] Solitons in dispersion-managed mode-locked lasers
    Ablowitz, Mark J.
    Horikis, Theodoros P.
    Ilan, Boaz
    [J]. PHYSICAL REVIEW A, 2008, 77 (03):
  • [6] Asymptotic Analysis of Pulse Dynamics in Mode-Locked Lasers
    Ablowitz, Mark J.
    Horikis, Theodoros P.
    Nixon, Sean D.
    Zhu, Yi
    [J]. STUDIES IN APPLIED MATHEMATICS, 2009, 122 (04) : 411 - 425
  • [7] Bound states of dark solitons in the quintic Ginzburg-Landau equation
    Afanasjev, VV
    Chu, PL
    Malomed, BA
    [J]. PHYSICAL REVIEW E, 1998, 57 (01) : 1088 - 1091
  • [8] Agrawal G.P, 2002, Fiber-optic communication systems, VThird
  • [9] Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach
    Akhmediev, N
    Soto-Crespo, JM
    Town, G
    [J]. PHYSICAL REVIEW E, 2001, 63 (05): : 566021 - 566021
  • [10] Stable soliton pairs in optical transmission lines and fiber lasers
    Akhmediev, NN
    Ankiewicz, A
    Soto-Crespo, JM
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1998, 15 (02) : 515 - 523