Spatial dynamics of SIRT1 and the subnuclear distribution of NADH species

被引:48
作者
Aguilar-Arnal, Lorena [1 ,3 ]
Ranjit, Suman [2 ]
Stringari, Chiara [2 ,4 ]
Orozco-Solis, Ricardo [1 ,5 ]
Gratton, Enrico [2 ]
Sassone-Corsi, Paolo [1 ]
机构
[1] Univ Calif Irvine, Ctr Epigenet & Metab, Dept Biol Chem, Sch Med,INSERM U904, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Biomed Engn, Lab Fluorescence Dynam, Irvine, CA 92697 USA
[3] Univ Nacl Autonoma Mexico, Inst Biomed Res, Mexico City 04510, DF, Mexico
[4] Ecole Polytech, Lab Opt & Biosci, F-91128 Palaiseau, France
[5] Natl Inst Genom Med INMEGEN, Mexico City 14610, DF, Mexico
关键词
sirtuins; NAD(+); epigenetics; FLIM; spectroscopy; FLUORESCENCE CORRELATION SPECTROSCOPY; IMAGE CORRELATION SPECTROSCOPY; LIFETIME MICROSCOPY; NICOTINAMIDE PHOSPHORIBOSYLTRANSFERASE; CIRCADIAN CONTROL; PHASOR APPROACH; NAD(+); SIRTUINS; METABOLISM; CHROMATIN;
D O I
10.1073/pnas.1609227113
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sirtuin 1 (SIRT1) is an NAD(+)-dependent deacetylase that functions as metabolic sensor of cellular energy and modulates biochemical pathways in the adaptation to changes in the environment. SIRT1 substrates include histones and proteins related to enhancement of mitochondrial function as well as antioxidant protection. Fluctuations in intracellular NAD(+) levels regulate SIRT1 activity, but how SIRT1 enzymatic activity impacts on NAD(+) levels and its intracellular distribution remains unclear. Here, we show that SIRT1 determines the nuclear organization of protein-bound NADH. Using multiphoton microscopy in live cells, we show that free and bound NADH are compartmentalized inside of the nucleus, and its subnuclear distribution depends on SIRT1. Importantly, SIRT6, a chromatin-bound deacetylase of the same class, does not influence NADH nuclear localization. In addition, using fluorescence fluctuation spectroscopy in single living cells, we reveal that NAD(+) metabolism in the nucleus is linked to subnuclear dynamics of active SIRT1. These results reveal a connection between NAD(+) metabolism, NADH distribution, and SIRT1 activity in the nucleus of live cells and pave the way to decipher links between nuclear organization and metabolism.
引用
收藏
页码:12715 / 12720
页数:6
相关论文
共 63 条
  • [1] Chromatin landscape and circadian dynamics: Spatial and temporal organization of clock transcription
    Aguilar-Arnal, Lorena
    Sassone-Corsi, Paolo
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (22) : 6863 - 6870
  • [2] NAD+-SIRT1 control of H3K4 trimethylation through circadian deacetylation of MLL1
    Aguilar-Arnal, Lorena
    Katada, Sayako
    Orozco-Solis, Ricardo
    Sassone-Corsi, Paolo
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2015, 22 (04) : 312 - U60
  • [3] Cycles in spatial and temporal chromosomal organization driven by the circadian clock
    Aguilar-Arnal, Lorena
    Hakim, Ofir
    Patel, Vishal R.
    Baldi, Pierre
    Hager, Gordon L.
    Sassone-Corsi, Paolo
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2013, 20 (10) : 1206 - +
  • [4] [Anonymous], 2014, INTRO FLUORESCENCE
  • [5] A High-Confidence Interaction Map Identifies SIRT1 as a Mediator of Acetylation of USP22 and the SAGA Coactivator Complex
    Armour, Sean M.
    Bennett, Eric J.
    Braun, Craig R.
    Zhang, Xiao-Yong
    McMahon, Steven B.
    Gygi, Steven P.
    Harper, J. Wade
    Sinclair, David A.
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2013, 33 (08) : 1487 - 1502
  • [6] Time for Food: The Intimate Interplay between Nutrition, Metabolism, and the Circadian Clock
    Asher, Gad
    Sassone-Corsi, Paolo
    [J]. CELL, 2015, 161 (01) : 84 - 92
  • [7] Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1
    Bellet, Marina M.
    Nakahata, Yasukazu
    Boudjelal, Mohamed
    Watts, Emma
    Mossakowska, Danuta E.
    Edwards, Kenneth A.
    Cervantes, Marlene
    Astarita, Giuseppe
    Loh, Christine
    Ellis, James L.
    Vlasuk, George P.
    Sassone-Corsi, Paolo
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (09) : 3333 - 3338
  • [8] Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH
    Bird, DK
    Yan, L
    Vrotsos, KM
    Eliceiri, KW
    Vaughan, EM
    Keely, PJ
    White, JG
    Ramanujam, N
    [J]. CANCER RESEARCH, 2005, 65 (19) : 8766 - 8773
  • [9] Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope
    Brown, C. M.
    Dalal, R. B.
    Hebert, B.
    Digman, M. A.
    Horwitz, A. R.
    Gratton, E.
    [J]. JOURNAL OF MICROSCOPY-OXFORD, 2008, 229 (01): : 78 - 91
  • [10] Fluorescence Correlation Spectroscopy: Molecular Complexing in Solution and in Living Cells
    Bulseco, Dylan A.
    Wolf, David E.
    [J]. DIGITAL MICROSCOPY, 4TH EDITION, 2013, 114 : 489 - 524