Computing high precision Matrix Pad, approximants

被引:3
作者
Beckermann, Bernhard [1 ]
Bessis, Daniel [2 ]
Perotti, Luca [2 ]
Vrinceanu, Daniel [2 ]
机构
[1] UST Lille, UFR Math M3, Lab Paul Painleve UMR CNRS ANO EDP 8524, F-59655 Villeneuve Dascq, France
[2] Texas So Univ, Dept Phys, Houston, TX 77004 USA
基金
美国国家科学基金会;
关键词
Matrix Pade approximants; Fraction-free computations; Time series; REMAINDER SEQUENCES; SUBRESULTANTS;
D O I
10.1007/s11075-012-9596-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe a new method of computing matrix Pad, approximants of series with integer data in an efficient and fraction-free way, by controlling the growth of the size of intermediate coefficients. This algorithm is applied to compute high precision Pad, approximants of matrix-valued generating functions of time series. As an illustration we show that we can successfully recover from noisy equidistant sampling data a joint damped signal of four antenna, even in the presence of background signals.
引用
收藏
页码:189 / 208
页数:20
相关论文
共 13 条
[1]  
Baker G. A., 1995, ENCY MATH
[2]  
BAREISS EH, 1968, MATH COMPUT, V22, P565
[3]  
Beckermann B., 2000, Reliable Computing, V6, P365, DOI 10.1023/A:1009942122633
[4]   Fraction-free computation of matrix rational interpolants and matrix GCDs [J].
Beckermann, B ;
Labahn, G .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 22 (01) :114-144
[5]  
Beckermann B., 1997, P ISSAC 97, P125
[6]   Universal analytic properties of noise: introducing the J-matrix formalism [J].
Bessis, Daniel ;
Perotti, Luca .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (36)
[7]   EUCLIDS ALGORITHM AND THEORY OF SUBRESULTANTS [J].
BROWN, WS ;
TRAUB, JF .
JOURNAL OF THE ACM, 1971, 18 (04) :505-&
[8]   RECURSIVE ALGORITHMS FOR THE MATRIX PADE-PROBLEM [J].
BULTHEEL, A .
MATHEMATICS OF COMPUTATION, 1980, 35 (151) :875-892
[9]   POWER-SERIES REMAINDER SEQUENCES AND PADE FRACTIONS OVER AN INTEGRAL DOMAIN [J].
CABAY, S ;
KOSSOWSKI, P .
JOURNAL OF SYMBOLIC COMPUTATION, 1990, 10 (02) :139-163
[10]   SUBRESULTANTS AND REDUCED POLYNOMIAL REMAINDER SEQUENCES [J].
COLLINS, GE .
JOURNAL OF THE ACM, 1967, 14 (01) :128-&