ON A VARIATIONAL APPROACH TO EXISTENCE AND MULTIPLICITY RESULTS FOR SEMIPOSITONE PROBLEMS

被引:0
作者
Costa, David G. [1 ]
Tehrani, Hossein [1 ]
Yang, Jianfu [2 ]
机构
[1] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
[2] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
关键词
Variational approach; semipositone problems;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a novel variational approach to the question of existence and multiplicity of positive solutions to semipositone problems in a bounded smooth domain of R-N. We consider both the sublinear and superlinear cases.
引用
收藏
页数:10
相关论文
共 20 条
[11]   NON-NEGATIVE SOLUTIONS FOR A CLASS OF NON-POSITONE PROBLEMS [J].
CASTRO, A ;
SHIVAJI, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1988, 108 :291-302
[12]   UNIQUENESS OF NONNEGATIVE SOLUTIONS FOR A SEMIPOSITONE PROBLEM WITH CONCAVE NONLINEARITY [J].
CASTRO, A ;
HASSANPOUR, M ;
SHIVAJI, R .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (11-12) :1927-1936
[13]  
Castro A., 1993, Results Math, V23, P214, DOI [10.1007/BF03322297, DOI 10.1007/BF03322297]
[14]  
Castro Alfonso, 2000, ELECT J DIFFERENTIAL, V05, P33
[15]   VARIATIONAL-METHODS FOR NON-DIFFERENTIABLE FUNCTIONALS AND THEIR APPLICATIONS TO PARTIAL-DIFFERENTIAL EQUATIONS [J].
CHANG, KC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (01) :102-129
[16]   NEW APPROACH TO LAGRANGE MULTIPLIERS. [J].
Clarke, Frank H. .
Mathematics of Operations Research, 1976, 1 (02) :165-174
[17]  
CLEMENT P, 1987, ANN SCUOLA NORM SUP, V14, P97
[18]  
de Figueiredo D.G., 1981, ESCOLA LATINOAMERICA
[19]  
KELLER HB, 1967, J MATH MECH, V16, P1361
[20]   Multiple positive solutions for a class of semilinear elliptic boundary value problems [J].
Maya, C ;
Shivaji, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 38 (04) :497-504