ON A VARIATIONAL APPROACH TO EXISTENCE AND MULTIPLICITY RESULTS FOR SEMIPOSITONE PROBLEMS

被引:0
作者
Costa, David G. [1 ]
Tehrani, Hossein [1 ]
Yang, Jianfu [2 ]
机构
[1] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
[2] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
关键词
Variational approach; semipositone problems;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a novel variational approach to the question of existence and multiplicity of positive solutions to semipositone problems in a bounded smooth domain of R-N. We consider both the sublinear and superlinear cases.
引用
收藏
页数:10
相关论文
共 20 条
[1]   UNIQUENESS AND STABILITY OF NONNEGATIVE SOLUTIONS FOR SEMIPOSITONE PROBLEMS IN A BALL [J].
ALI, I ;
CASTRO, A ;
SHIVAJI, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (03) :775-782
[2]  
Allegretto W., 1992, Differ. Integr. Equ, V5, P95
[3]   EXISTENCE OF STEADY VORTEX RINGS IN AN IDEAL FLUID [J].
AMBROSETTI, A ;
STRUWE, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1989, 108 (02) :97-109
[4]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[5]  
Ambrosetti A., 1994, Differ. Integr. Equ, V7, P655
[6]  
Anuradha V., 1994, ELECT J DIFFERENTIAL, V4, p1
[7]  
Arcoya D., 1990, ATTI ACCAD NAZ FMNRL, V1, P117
[8]  
BONA JL, 1983, J MATH PURE APPL, V62, P389
[9]  
Brown K.J., 1989, DIFFERENTIAL INTEGRA, V2, P541
[10]   NON-NEGATIVE SOLUTIONS FOR A CLASS OF RADIALLY SYMMETRIC NON-POSITONE PROBLEMS [J].
CASTRO, A ;
SHIVAJI, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 106 (03) :735-740