Improved estimators for the self-energy and vertex function in hybridization-expansion continuous-time quantum Monte Carlo simulations

被引:101
作者
Hafermann, Hartmut [1 ]
Patton, Kelly R. [2 ]
Werner, Philipp [3 ]
机构
[1] Ecole Polytech, Ctr Phys Theor, CNRS, F-91128 Palaiseau, France
[2] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[3] ETH, CH-8093 Zurich, Switzerland
关键词
MEAN-FIELD THEORY; IMPURITY MODELS;
D O I
10.1103/PhysRevB.85.205106
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose efficient measurement procedures for the self-energy and vertex function of the Anderson impurity model within the hybridization expansion continuous-time quantum Monte Carlo algorithm. The method is based on the measurement of higher-order correlation functions related to the quantities being sought through the equation of motion, a technique previously introduced in the numerical renormalization-group context. For the case of interactions of density-density type, the additional correlators can be obtained at essentially no additional computational cost. In combination with a recently introduced method for filtering the Monte Carlo noise using a representation in terms of orthogonal polynomials, we obtain data with unprecedented accuracy. This leads to an enhanced stability in analytical continuations of the self-energy or in two-particle-based theories such as the dual fermion approach. As an illustration of the method we reexamine the previously reported spin-freezing and high-spin to low-spin transitions in a two-orbital model with density-density interactions. In both cases, the vertex function undergoes significant changes, which suggests significant corrections to the dynamical mean-field solutions in dual fermion calculations.
引用
收藏
页数:14
相关论文
共 29 条
[1]   The ALPS project release 2.0: open source software for strongly correlated systems [J].
Bauer, B. ;
Carr, L. D. ;
Evertz, H. G. ;
Feiguin, A. ;
Freire, J. ;
Fuchs, S. ;
Gamper, L. ;
Gukelberger, J. ;
Gull, E. ;
Guertler, S. ;
Hehn, A. ;
Igarashi, R. ;
Isakov, S. V. ;
Koop, D. ;
Ma, P. N. ;
Mates, P. ;
Matsuo, H. ;
Parcollet, O. ;
Pawlowski, G. ;
Picon, J. D. ;
Pollet, L. ;
Santos, E. ;
Scarola, V. W. ;
Schollwoeck, U. ;
Silva, C. ;
Surer, B. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Wall, M. L. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
[2]   Orthogonal polynomial representation of imaginary-time Green's functions [J].
Boehnke, Lewin ;
Hafermann, Hartmut ;
Ferrero, Michel ;
Lechermann, Frank ;
Parcollet, Olivier .
PHYSICAL REVIEW B, 2011, 84 (07)
[3]   Numerical renormalization group calculations for the self-energy of the impurity Anderson model [J].
Bulla, R ;
Hewson, AC ;
Pruschke, T .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (37) :8365-8380
[4]   Janus-Faced Influence of Hund's Rule Coupling in Strongly Correlated Materials [J].
de' Medici, Luca ;
Mravlje, Jernej ;
Georges, Antoine .
PHYSICAL REVIEW LETTERS, 2011, 107 (25)
[5]   Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions [J].
Georges, A ;
Kotliar, G ;
Krauth, W ;
Rozenberg, MJ .
REVIEWS OF MODERN PHYSICS, 1996, 68 (01) :13-125
[6]   Continuous-time auxiliary-field Monte Carlo for quantum impurity models [J].
Gull, E. ;
Werner, P. ;
Parcollet, O. ;
Troyer, M. .
EPL, 2008, 82 (05)
[7]   Continuous-time Monte Carlo methods for quantum impurity models [J].
Gull, Emanuel ;
Millis, Andrew J. ;
Lichtenstein, Alexander I. ;
Rubtsov, Alexey N. ;
Troyer, Matthias ;
Werner, Philipp .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :349-404
[8]   Momentum-sector-selective metal-insulator transition in the eight-site dynamical mean-field approximation to the Hubbard model in two dimensions [J].
Gull, Emanuel ;
Parcollet, Olivier ;
Werner, Philipp ;
Millis, Andrew J. .
PHYSICAL REVIEW B, 2009, 80 (24)
[9]   Performance analysis of continuous-time solvers for quantum impurity models [J].
Gull, Emanuel ;
Werner, Philipp ;
Millis, Andrew ;
Troyer, Matthias .
PHYSICAL REVIEW B, 2007, 76 (23)
[10]   Efficient Perturbation Theory for Quantum Lattice Models [J].
Hafermann, H. ;
Li, G. ;
Rubtsov, A. N. ;
Katsnelson, M. I. ;
Lichtenstein, A. I. ;
Monien, H. .
PHYSICAL REVIEW LETTERS, 2009, 102 (20)