A PROXIMAL POINT-TYPE ALGORITHM FOR PSEUDOMONOTONE EQUILIBRIUM PROBLEMS

被引:10
|
作者
Kim, Jong Kyu [1 ]
Anh, Pham Ngoc [1 ]
Hyun, Ho Geun [1 ]
机构
[1] Kyungnam Univ, Dept Math Educ, Masan 631701, South Korea
关键词
equilibrium problems; proximal point algorithm; pseudomonotonicity; linear proximal function; Banach contraction method; VARIATIONAL-INEQUALITIES; COMPLEMENTARITY-PROBLEMS; PRINCIPLE;
D O I
10.4134/BKMS.2012.49.4.749
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A globally convergent algorithm for solving equilibrium problems is proposed. The algorithm is based on a proximal point algorithm (shortly (PPA)) with a positive definite matrix M which is not necessarily symmetric. The proximal function in existing (PPA) usually is the gradient of a quadratic function, namely, del(parallel to x parallel to(2)(M)). This leads to a proximal point-type algorithm. We first solve pseudomonotone equilibrium problems without Lipschitzian assumption and prove the convergence of algorithms. Next, we couple this technique with the Banach contraction method for multivalued variational inequalities. Finally some computational results are given.
引用
收藏
页码:749 / 759
页数:11
相关论文
共 50 条
  • [1] ON THE BREGMAN INEXACT PROXIMAL INTERIOR POINT ALGORITHM FOR ABSTRACT PSEUDOMONOTONE EQUILIBRIUM PROBLEMS
    Ait Mansour, M.
    Chbani, Z.
    Riahi, H.
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (04) : 681 - 710
  • [2] Proximal Point Algorithms for Quasiconvex Pseudomonotone Equilibrium Problems
    Iusem, A.
    Lara, F.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 193 (1-3) : 443 - 461
  • [3] Proximal Point Algorithms for Quasiconvex Pseudomonotone Equilibrium Problems
    A. Iusem
    F. Lara
    Journal of Optimization Theory and Applications, 2022, 193 : 443 - 461
  • [4] Proximal point method with Bregman distance for quasiconvex pseudomonotone equilibrium problems
    Ansari, Qamrul Hasan
    Babu, Feeroz
    Raju, Muzaffar Sarkar
    OPTIMIZATION, 2023,
  • [5] AN EXTRAGRADIENT ALGORITHM FOR FIXED POINT PROBLEMS AND PSEUDOMONOTONE EQUILIBRIUM PROBLEMS
    Yao, Zhangsong
    Liou, Yeong-Cheng
    Zhu, Li-Jun
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2020, 82 (04): : 89 - 96
  • [6] Pseudomonotone operators and the Bregman Proximal Point Algorithm
    Langenberg, Nils
    JOURNAL OF GLOBAL OPTIMIZATION, 2010, 47 (04) : 537 - 555
  • [7] Pseudomonotone operators and the Bregman Proximal Point Algorithm
    Nils Langenberg
    Journal of Global Optimization, 2010, 47 : 537 - 555
  • [8] AN EXTRAGRADIENT ALGORITHM FOR STRONGLY PSEUDOMONOTONE EQUILIBRIUM PROBLEMS ON HADAMARD MANIFOLDS
    Khammahawong, Konrawut
    Kumam, Poom
    Chaipunya, Parin
    Yao, Jen-Chih
    Wen, Ching-Feng
    Jirakitpuwapat, Wachirapong
    THAI JOURNAL OF MATHEMATICS, 2020, 18 (01): : 350 - 371
  • [9] Outer approximation algorithms for pseudomonotone equilibrium problems
    Pham Ngoc Anh
    Kim, Jong Kyu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (09) : 2588 - 2595
  • [10] Convergence analysis of the proximal point algorithm for pseudo-monotone equilibrium problems
    Khatibzadeh, Hadi
    Mohebbi, Vahid
    Ranjbar, Sajad
    OPTIMIZATION METHODS & SOFTWARE, 2015, 30 (06) : 1146 - 1163