Elevated Temperature Anodized Nb2O5: A Photoanode Material with Exceptionally Large Photoconversion Efficiencies

被引:156
作者
Ou, Jian Zhen [1 ]
Rani, Rozina A. [1 ]
Ham, Moon-Ho [2 ,3 ]
Field, Matthew R. [4 ]
Zhang, Yuan [1 ]
Zheng, Haidong [1 ]
Reece, Peter [5 ]
Zhuiykov, Serge [6 ]
Sriram, Sharath [1 ]
Bhaskaran, Madhu [1 ]
Kanee, Richard B. [7 ]
Kalantar-Zadeh, Kourosh [1 ]
机构
[1] RMIT Univ, Sch Elect & Comp Engn, Melbourne, Vic, Australia
[2] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[3] Gwangju Inst Sci & Technol, Sch Mat Sci & Engn, Kwangju, South Korea
[4] RMIT Univ, Sch Appl Sci, Melbourne, Vic, Australia
[5] Univ New S Wales, Sch Phys, Sydney, NSW, Australia
[6] CSIRO, Mat Sci & Engn Div, Highett, Vic, Australia
[7] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
基金
澳大利亚研究理事会;
关键词
dye-sensitized solar cell; Nb2O5; nanoporous network; TiO2; anodization; SENSITIZED SOLAR-CELLS; TIO2 NANOTUBE ARRAYS; SELF-ORGANIZED NIOBIUM; OXIDE; RECOMBINATION; FABRICATION; TRANSPORT; SPECTRA;
D O I
10.1021/nn300408p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here, we demonstrate that niobium pentoxide (Nb2O5) is an ideal candidate for increasing the efficiencies of dye-sensitized solar cells (DSSCs). The key lies in developing a Nb2O5 crisscross nanoporous network, using our unique elevated temperature anodization process. For the same thicknesses of 4 mu m, the DSSC based on the Nb2O5 layer has a significantly higher efficiency (similar to 4.1%) when compared to that which incorporates a titanium dioxide nanotubular layer (similar to 2.7%). This is the highest efficiency among all of the reported photoanodes for such a thickness when utilizing back-side illumination. We ascribe this to a combination of reduced electron scattering, greater surface area, wider band gap, and higher conduction band edge, as well as longer effective electron lifetimes.
引用
收藏
页码:4045 / 4053
页数:9
相关论文
共 39 条
[1]   Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy [J].
Adachi, Motonari ;
Sakamoto, Masaru ;
Jiu, Jinting ;
Ogata, Yukio ;
Isoda, Seiji .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (28) :13872-13880
[2]   Origin of efficiency enhancement in Nb2O5 coated titanium dioxide nanorod based dye sensitized solar cells [J].
Barea, Eva ;
Xu, Xueqing ;
Gonzalez-Pedro, Victoria ;
Ripolles-Sanchis, Teresa ;
Fabregat-Santiago, Francisco ;
Bisquert, Juan .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3414-3419
[3]   Porous niobium oxide films prepared by anodization-annealing-anodization [J].
Choi, Jinsub ;
Lim, Jae Hoon ;
Lee, Jaeyoung ;
Kim, Kyung Ja .
NANOTECHNOLOGY, 2007, 18 (05)
[4]  
Dang XN, 2011, NAT NANOTECHNOL, V6, P377, DOI [10.1038/NNANO.2011.50, 10.1038/nnano.2011.50]
[5]   Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers [J].
Dürr, M ;
Schmid, A ;
Obermaier, M ;
Rosselli, S ;
Yasuda, A ;
Nelles, G .
NATURE MATERIALS, 2005, 4 (08) :607-611
[6]   Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy [J].
Fabregat-Santiago, F ;
Bisquert, J ;
Garcia-Belmonte, G ;
Boschloo, G ;
Hagfeldt, A .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2005, 87 (1-4) :117-131
[7]   Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures [J].
Ghicov, Andrei ;
Schmuki, Patrik .
CHEMICAL COMMUNICATIONS, 2009, (20) :2791-2808
[8]   Recent Advances in Sensitized Mesoscopic Solar Cells [J].
Graetzel, Michael .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (11) :1788-1798
[9]   Photoelectrochemical cells [J].
Grätzel, M .
NATURE, 2001, 414 (6861) :338-344
[10]   Advancing beyond current generation dye-sensitized solar cells [J].
Hamann, Thomas W. ;
Jensen, Rebecca A. ;
Martinson, Alex B. F. ;
Van Ryswyk, Hal ;
Hupp, Joseph T. .
ENERGY & ENVIRONMENTAL SCIENCE, 2008, 1 (01) :66-78