How to interpret a genome-wide association study (GWAS)?

被引:1
作者
Debette, Stephanie [1 ,2 ,3 ]
机构
[1] Univ Versailles St Quentin En Yvelines, Hop R Poincare, Garches, France
[2] Hop La Pitie Salpetriere, INSERM, U708, Paris, France
[3] Boston Univ, Sch Med, Dept Neurol, Framingham Heart Study, Boston, MA 02118 USA
来源
SANG THROMBOSE VAISSEAUX | 2012年 / 24卷 / 05期
关键词
genetic association studies; genome; polymorphism; multifactorial disease; high throughput genotyping; SUSCEPTIBILITY LOCI; METAANALYSIS; STRATIFICATION; TRAITS; STROKE; GENE; SNP;
D O I
10.1684/stv.2012.0692
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Genome-wide association studies (GWAS) aim at identifying genetic susceptibility to multifactorial diseases. They compare the frequency of several hundred thousand genetic variants distributed across the chromosomes in a group of cases with a given disease and a group of controls, using high-throughput genotyping technologies. In contrast with candidate gene association studies, GWAS use an agnostic approach, requiring no a priori hypothesis about the genes involved. The important number of statistical tests performed most often requires access to computer clusters for adequate processing power, and correction for multiple testing needs to be performed, a p-value < 5 x 10(-8) being usually considered as statistically significant. Large samples are needed to reach sufficient statistical power, thus requiring multicenter projects led by international consortia. It is important to take into account the ethnic and geographic origin of study participants, in order to avoid false positive associations due to population stratification. Another crucial point, as for any genetic association study, is to replicate significant associations in an independent population. Over the past years, GWAS have lead to the identification of hundreds of novel genetic variants associated with various multifactorial diseases. Interestingly these were generally located within or close to previously unsuspected genes. Discovering new susceptibility genes is essential to improve our understanding of the biological pathways involved in multifactorial diseases. This could help identify new therapeutic targets and strategies. Another potential application is improved risk prediction and personalized medicine or therapy. So far, GWAS have been mainly focused on common single nucleotide polymorphisms, i.e. with a relatively high minor allele frequency. Other types of genetic variation are likely to contribute substantially to the heritability of multifactorial diseases.
引用
收藏
页码:240 / 247
页数:8
相关论文
共 35 条
[21]   A multilocus genetic risk score for coronary heart disease: case-control and prospective cohort analyses [J].
Ripatti, Samuli ;
Tikkanen, Emmi ;
Orho-Melander, Marju ;
Havulinna, Aki S. ;
Silander, Kaisa ;
Sharma, Amitabh ;
Guiducci, Candace ;
Perola, Markus ;
Jula, Antti ;
Sinisalo, Juha ;
Lokki, Marja-Liisa ;
Nieminen, Markku S. ;
Melander, Olle ;
Salomaa, Veikko ;
Peltonen, Leena ;
Kathiresan, Sekar .
LANCET, 2010, 376 (9750) :1393-1400
[22]   The future of genetic studies of complex human diseases [J].
Risch, N ;
Merikangas, K .
SCIENCE, 1996, 273 (5281) :1516-1517
[23]  
Schunkert H, 2011, NAT GENET, V43, P333, DOI 10.1161/CIRCGENETICS.111.960443
[24]   Clinical Pharmacogenetics Implementation Consortium Guidelines for Cytochrome P450-2C19 (CYP2C19) Genotype and Clopidogrel Therapy [J].
Scott, S. A. ;
Sangkuhl, K. ;
Gardner, E. E. ;
Stein, C. M. ;
Hulot, J-S ;
Johnson, J. A. ;
Roden, D. M. ;
Klein, T. E. ;
Shuldiner, A. R. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2011, 90 (02) :328-332
[25]   Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia [J].
Sebastiani, P ;
Ramoni, MF ;
Nolan, V ;
Baldwin, CT ;
Steinberg, MH .
NATURE GENETICS, 2005, 37 (04) :435-440
[26]   Genome-wide Analysis of Genetic Loci Associated With Alzheimer Disease [J].
Seshadri, Sudha ;
Fitzpatrick, Annette L. ;
Ikram, M. Arfan ;
DeStefano, Anita L. ;
Gudnason, Vilmundur ;
Boada, Merce ;
Bis, Joshua C. ;
Smith, Albert V. ;
Carassquillo, Minerva M. ;
Lambert, Jean Charles ;
Harold, Denise ;
Schrijvers, Elisabeth M. C. ;
Ramirez-Lorca, Reposo ;
Debette, Stephanie ;
Longstreth, W. T., Jr. ;
Janssens, A. Cecile J. W. ;
Pankratz, V. Shane ;
Dartigues, Jean Francois ;
Hollingworth, Paul ;
Aspelund, Thor ;
Hernandez, Isabel ;
Beiser, Alexa ;
Kuller, Lewis H. ;
Koudstaal, Peter J. ;
Dickson, Dennis W. ;
Tzourio, Christophe ;
Abraham, Richard ;
Antunez, Carmen ;
Du, Yangchun ;
Rotter, Jerome I. ;
Aulchenko, Yurii S. ;
Harris, Tamara B. ;
Petersen, Ronald C. ;
Berr, Claudine ;
Owen, Michael J. ;
Lopez-Arrieta, Jesus ;
Varadarajan, Badri N. ;
Becker, James T. ;
Rivadeneira, Fernando ;
Nalls, Michael A. ;
Graff-Radford, Neill R. ;
Campion, Dominique ;
Auerbach, Sanford ;
Rice, Kenneth ;
Hofman, Albert ;
Jonsson, Palmi V. ;
Schmidt, Helena ;
Lathrop, Mark ;
Mosley, Thomas H. ;
Au, Rhoda .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2010, 303 (18) :1832-1840
[27]   Transferability of Type 2 Diabetes Implicated Loci in Multi-Ethnic Cohorts from Southeast Asia [J].
Sim, Xueling ;
Ong, Rick Twee-Hee ;
Suo, Chen ;
Tay, Wan-Ting ;
Liu, Jianjun ;
Ng, Daniel Peng-Keat ;
Boehnke, Michael ;
Chia, Kee-Seng ;
Wong, Tien-Yin ;
Seielstad, Mark ;
Teo, Yik-Ying ;
Tai, E-Shyong .
PLOS GENETICS, 2011, 7 (04)
[28]   Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index [J].
Speliotes, Elizabeth K. ;
Willer, Cristen J. ;
Berndt, Sonja I. ;
Monda, Keri L. ;
Thorleifsson, Gudmar ;
Jackson, Anne U. ;
Allen, Hana Lango ;
Lindgren, Cecilia M. ;
Luan, Jian'an ;
Maegi, Reedik ;
Randall, Joshua C. ;
Vedantam, Sailaja ;
Winkler, Thomas W. ;
Qi, Lu ;
Workalemahu, Tsegaselassie ;
Heid, Iris M. ;
Steinthorsdottir, Valgerdur ;
Stringham, Heather M. ;
Weedon, Michael N. ;
Wheeler, Eleanor ;
Wood, Andrew R. ;
Ferreira, Teresa ;
Weyant, Robert J. ;
Segre, Ayellet V. ;
Estrada, Karol ;
Liang, Liming ;
Nemesh, James ;
Park, Ju-Hyun ;
Gustafsson, Stefan ;
Kilpelaenen, Tuomas O. ;
Yang, Jian ;
Bouatia-Naji, Nabila ;
Esko, Tonu ;
Feitosa, Mary F. ;
Kutalik, Zoltan ;
Mangino, Massimo ;
Raychaudhuri, Soumya ;
Scherag, Andre ;
Smith, Albert Vernon ;
Welch, Ryan ;
Zhao, Jing Hua ;
Aben, Katja K. ;
Absher, Devin M. ;
Amin, Najaf ;
Dixon, Anna L. ;
Fisher, Eva ;
Glazer, Nicole L. ;
Goddard, Michael E. ;
Heard-Costa, Nancy L. ;
Hoesel, Volker .
NATURE GENETICS, 2010, 42 (11) :937-U53
[29]   Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis [J].
Voight, Benjamin F. ;
Scott, Laura J. ;
Steinthorsdottir, Valgerdur ;
Morris, Andrew P. ;
Dina, Christian ;
Welch, Ryan P. ;
Zeggini, Eleftheria ;
Huth, Cornelia ;
Aulchenko, Yurii S. ;
Thorleifsson, Gudmar ;
McCulloch, Laura J. ;
Ferreira, Teresa ;
Grallert, Harald ;
Amin, Najaf ;
Wu, Guanming ;
Willer, Cristen J. ;
Raychaudhuri, Soumya ;
McCarroll, Steve A. ;
Langenberg, Claudia ;
Hofmann, Oliver M. ;
Dupuis, Josee ;
Qi, Lu ;
Segre, Ayellet V. ;
van Hoek, Mandy ;
Navarro, Pau ;
Ardlie, Kristin ;
Balkau, Beverley ;
Benediktsson, Rafn ;
Bennett, Amanda J. ;
Blagieva, Roza ;
Boerwinkle, Eric ;
Bonnycastle, Lori L. ;
Bostrom, Kristina Bengtsson ;
Bravenboer, Bert ;
Bumpstead, Suzannah ;
Burtt, Noisel P. ;
Charpentier, Guillaume ;
Chines, Peter S. ;
Cornelis, Marilyn ;
Couper, David J. ;
Crawford, Gabe ;
Doney, Alex S. F. ;
Elliott, Katherine S. ;
Elliott, Amanda L. ;
Erdos, Michael R. ;
Fox, Caroline S. ;
Franklin, Christopher S. ;
Ganser, Martha ;
Gieger, Christian ;
Grarup, Niels .
NATURE GENETICS, 2010, 42 (07) :579-U155
[30]  
Wain LV, NAT GENET 0527, V43, P1005