Modelling NASDAQ Series by Sparse Multifractional Brownian Motion

被引:15
作者
Bertrand, Pierre R. [1 ,2 ]
Hamdouni, Abdelkader [3 ]
Khadhraoui, Samia [4 ]
机构
[1] INRIA Saclay, Lab Math UMR CNRS, F-6620 Aubiere, France
[2] Clermont Univ, F-6620 Aubiere, France
[3] Univ Monastir, Fac Sci, Computat Math Lab, Monastir 5019, Tunisia
[4] Inst Super Gest, Sousse 4000, Tunisia
关键词
Model selection; Finance; Fractional Brownian motion; Multi-fractional Brownian motion; Generalized quadratic variation; Wavelet analysis; WAVELET ANALYSIS; LOCAL-STRUCTURE; ARBITRAGE; IDENTIFICATION; VERSION;
D O I
10.1007/s11009-010-9188-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The objective of this paper is to compare the performance of different estimators of Hurst index for multifractional Brownian motion (mBm), namely, Generalized Quadratic Variation (GQV) Estimator, Wavelet Estimator and Linear Regression GQV Estimator. Both estimators are used in the real financial dataset Nasdaq time series from 1971 to the 3rd quarter of 2009. Firstly, we review definitions, properties and statistical studies of fractional Brownian motion (fBm) and mBm. Secondly, a numerical artifact is observed: when we estimate the time varying Hurst index H(t) for an mBm, sampling fluctuation gives the impression that H(t) is itself a stochastic process, even when H(t) is constant. To avoid this artifact, we introduce sparse modelling for mBm and apply it to Nasdaq time series.
引用
收藏
页码:107 / 124
页数:18
相关论文
共 42 条
[1]  
[Anonymous], LONG RANGE DEPENDENC
[2]   Multifractional processes with random exponent [J].
Ayache, A ;
Taqqu, MS .
PUBLICACIONS MATEMATIQUES, 2005, 49 (02) :459-486
[3]  
Ayache A., 2007, STAT INFERENCE STOCH, V10, P1
[4]  
Ayache A, 2010, RECENT DEV FRACTALS
[5]  
Ayache A, 2007, REV MAT IBEROAM, V23, P327
[6]   Identification of the multiscale fractional Brownian motion with biomechanical applications [J].
Bardet, Jean-Marc ;
Bertrand, Pierre .
JOURNAL OF TIME SERIES ANALYSIS, 2007, 28 (01) :1-52
[7]   Statistical study of the wavelet analysis of fractional Brownian motion [J].
Bardet, JM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (04) :991-999
[8]   Identifying the multifractional function of a Gaussian process [J].
Benassi, A ;
Cohen, S ;
Istas, J .
STATISTICS & PROBABILITY LETTERS, 1998, 39 (04) :337-345
[9]  
Benassi A, 1997, REV MAT IBEROAM, V13, P19
[10]  
Benassi Albert, 2000, STAT INFER STOCH PRO, V3, P101, DOI DOI 10.1023/A:1009997729317