Multilayer Unmixing for Hyperspectral Imagery With Fast Kernel Archetypal Analysis

被引:14
作者
Zhao, Genping [1 ]
Zhao, Chunhui [1 ]
Jia, Xiuping [2 ]
机构
[1] Harbin Engn Univ, Coll Informat & Telecommun, Harbin 150001, Peoples R China
[2] Univ New South Wales, Sch Informat Technol & Engn, Canberra, ACT 2600, Australia
基金
中国国家自然科学基金;
关键词
Hyperspectral imagery; kernel archetypal analysis (KAA); multilayer network; Nystrom method; spectral unmixing; SPARSE REGRESSION; CLASSIFICATION;
D O I
10.1109/LGRS.2016.2595102
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The multilayer network in deep learning provides a promising means for rich data representation. Inspired by this approach, we investigate multilayer unmixing for spectral decomposition with fast kernel archetypal analysis (KAA). KAA is used for endmember extraction and abundance estimation simultaneously. To refine the initial unmixing results, a multilayer process is utilized to provide final unmixing results at the end of the network. Moreover, a fast implementation of KAA is proposed via using the Nystrom method to relieve KAA's memory issue and decrease the processing time. The proposed method is tested on both synthetic and real hyperspectral image data sets. The results demonstrate that the multilayer unmixing algorithm outperforms the conventional unmixing techniques.
引用
收藏
页码:1532 / 1536
页数:5
相关论文
共 18 条
[1]  
[Anonymous], 2006, NIPS
[2]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[3]   Fast and Robust Archetypal Analysis for Representation Learning [J].
Chen, Yuansi ;
Mairal, Julien ;
Harchaoui, Zaid .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :1478-1485
[4]   Spectral-Spatial Classification of Hyperspectral Data Based on Deep Belief Network [J].
Chen, Yushi ;
Zhao, Xing ;
Jia, Xiuping .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) :2381-2392
[5]   Deep Learning-Based Classification of Hyperspectral Data [J].
Chen, Yushi ;
Lin, Zhouhan ;
Zhao, Xing ;
Wang, Gang ;
Gu, Yanfeng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2094-2107
[6]   ARCHETYPAL ANALYSIS [J].
CUTLER, A ;
BREIMAN, L .
TECHNOMETRICS, 1994, 36 (04) :338-347
[7]  
Dias JM, 2010, INVESTIGACAO, P1, DOI 10.14195/978-989-26-0193-9
[8]  
Guo R., 2015, 2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), P1, DOI DOI 10.1109/WHISPERS.2015.8075378
[9]   Collaborative Sparse Regression for Hyperspectral Unmixing [J].
Iordache, Marian-Daniel ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (01) :341-354
[10]  
Lee H., 2007, ADV NEURAL INFORM PR, P801, DOI DOI 10.7551/MITPRESS/7503.003.0105