Variation of lattice constant and cluster formation in GaAsBi

被引:54
作者
Puustinen, J. [1 ]
Wu, M. [2 ]
Luna, E. [2 ]
Schramm, A. [1 ]
Laukkanen, P. [3 ]
Laitinen, M. [4 ]
Sajavaara, T. [4 ]
Guina, M. [1 ]
机构
[1] Tampere Univ Technol, Optoelect Res Ctr, FI-33101 Tampere, Finland
[2] Paul Drude Inst Festkorperelekt, D-10117 Berlin, Germany
[3] Univ Turku, Dept Phys & Astron, FI-20014 Turku, Finland
[4] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland
基金
芬兰科学院;
关键词
MOLECULAR-BEAM EPITAXY; TEMPERATURE-GROWN GAAS; LAYERS; GABIAS;
D O I
10.1063/1.4851036
中图分类号
O59 [应用物理学];
学科分类号
摘要
We investigate the structural properties of GaAsBi layers grown by molecular beam epitaxy on GaAs at substrate temperatures between 220-315 degrees C. Irrespective of the growth temperature, the structures exhibited similar Bi compositions, and good overall crystal quality as deduced from X-Ray diffraction measurements. After thermal annealing at temperatures as low as 500 degrees C, the GaAsBi layers grown at the lowest temperatures exhibited a significant reduction of the lattice constant. The lattice variation was significantly larger for Bi-containing samples than for Bi-free low-temperature GaAs samples grown as a reference. Rutherford backscattering spectrometry gave no evidence of Bi diffusing out of the layer during annealing. However, dark-field and Z-contrast transmission electron microscopy analyses revealed the formation of GaAsBi clusters with a Bi content higher than in the surrounding matrix, as well as the presence of metallic As clusters. The apparent reduction of the lattice constant can be explained by a two-fold process: the diffusion of the excess As incorporated within AsGa antisites to As clusters, and the reduction of the Bi content in the GaAs matrix due to diffusion of Bi to GaAsBi clusters. Diffusion of both As and Bi are believed to be assisted by the native point defects, which are present in the low-temperature as-grown material. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 27 条
[1]   Dark field transmission electron microscope images of III-V quantum dot structures [J].
Beanland, R .
ULTRAMICROSCOPY, 2005, 102 (02) :115-125
[2]   GaBiAs: A material for optoelectronic terahertz devices [J].
Bertulis, K. ;
Krotkus, A. ;
Aleksejenko, G. ;
Pacebutas, V. ;
Adomavicius, R. ;
Molis, G. ;
Marcinkevicius, S. .
APPLIED PHYSICS LETTERS, 2006, 88 (20)
[3]   Thermal annealing effect on the properties of GaBiAs [J].
Butkute, Renata ;
Pacebutas, Vaidas ;
Cechavicius, Bronius ;
Adomavicius, Ramunas ;
Koroliov, Anton ;
Krotkus, Arunas .
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 9, NO 7, 2012, 9 (07) :1614-1616
[4]   Photoreflectance and photoluminescence study of annealing effects on GaAsBi layers grown by metalorganic vapor phase epitaxy [J].
Chine, Z. ;
Fitouri, H. ;
Zaied, I. ;
Rebey, A. ;
El Jani, B. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2010, 25 (06)
[5]   Influence of thermal annealing treatment on the luminescence properties of dilute GaNAs-Bismide alloy [J].
Feng, Gan ;
Oe, Kunishige ;
Yoshimoto, Masahiro .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2007, 46 (29-32) :L764-L766
[6]   Ga vacancies in low-temperature-grown GaAs identified by slow positrons [J].
Gebauer, J ;
KrauseRehberg, R ;
Eichler, S ;
Luysberg, M ;
Sohn, H ;
Weber, ER .
APPLIED PHYSICS LETTERS, 1997, 71 (05) :638-640
[7]   SUBPICOSECOND CARRIER LIFETIME IN GAAS GROWN BY MOLECULAR-BEAM EPITAXY AT LOW-TEMPERATURES [J].
GUPTA, S ;
FRANKEL, MY ;
VALDMANIS, JA ;
WHITAKER, JF ;
MOUROU, GA ;
SMITH, FW ;
CALAWA, AR .
APPLIED PHYSICS LETTERS, 1991, 59 (25) :3276-3278
[8]   Growth of high Bi concentration GaAs1-xBix by molecular beam epitaxy [J].
Lewis, R. B. ;
Masnadi-Shirazi, M. ;
Tiedje, T. .
APPLIED PHYSICS LETTERS, 2012, 101 (08)
[9]   MICROSTRUCTURE OF ANNEALED LOW-TEMPERATURE-GROWN GAAS-LAYERS [J].
LILIENTALWEBER, Z ;
CLAVERIE, A ;
WASHBURN, J ;
SMITH, F ;
CALAWA, R .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1991, 53 (02) :141-146
[10]   RAPID THERMAL ANNEALING OF LOW-TEMPERATURE GAAS-LAYERS [J].
LILIENTALWEBER, Z ;
LIN, XW ;
WASHBURN, J ;
SCHAFF, W .
APPLIED PHYSICS LETTERS, 1995, 66 (16) :2086-2088