c-Myc acts downstream of IL-15 in the regulation of memory CD8 T-cell homeostasis

被引:48
作者
Bianchi, Teresa
Gasser, Stephan
Trumpp, Andreas
MacDonald, H. Robson
机构
[1] Univ Lausanne, Ludwig Inst Canc Res, Lausanne Branch, CH-1066 Epalinges, Switzerland
[2] Swiss Inst Expt Canc Res, CH-1066 Epalinges, Switzerland
[3] Swiss Inst Expt Canc Res, Genet & Stem Cell Lab, CH-1066 Epalinges, Switzerland
[4] Swiss Fed Inst Technol, Epalinges, Switzerland
关键词
D O I
10.1182/blood-2005-09-3851
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
A subset of CD8 T cells in normal mice, expressing high levels of activation markers such as CD44, shares many properties with antigen-specitic memory CD8 T cells. Homeostasis of CD44 high CD8 T cells depends upon cytokines such as interleukin-15 (IL-15); however, the downstream signaling pathways regulating IL-15-dependent homeostatic proliferation are poorly defined. Surprisingly, we show here that haploinsufficiency of the protooncogene c-myc leads to a highly selective decrease in CD44(high) CD8 T cells in mice. Although steady-state proliferation and survival of CD44(high) CD8 T cells appeared not to be dependent on c-Myc, homeostatic proliferation of c-myc(+/-) CD44(high) CD8 T cells in lymphopenic hosts was strongly reduced, and the residual homeostatic proliferation of these cells appeared to occur independently of IL-15. Moreover, c-myc(+/-) CD44(high) CD8 T cells responded very poorly to purified IL-15 in vitro. Backcrossing of c-myc(+/-) mice to IL-15(-/-) mice revealed that the number of CD44(high) CD8 T cells decreased in an additive fashion in mice heterozygous for c-myc and IL-15. Finally homeostatic proliferation of antigen-specific memory CD44(high) CD8 T cells was also impaired in c-myc(+/-) mice. Collectively, our data identify c-Myc as a novel downstream component of the IL-15-dependent pathway controlling homeostatic proliferation of memory CD44(high) CD8 T cells.
引用
收藏
页码:3992 / 3999
页数:8
相关论文
共 62 条
[1]   THE C-MYC ONCOGENE DRIVEN BY IMMUNOGLOBULIN ENHANCERS INDUCES LYMPHOID MALIGNANCY IN TRANSGENIC MICE [J].
ADAMS, JM ;
HARRIS, AW ;
PINKERT, CA ;
CORCORAN, LM ;
ALEXANDER, WS ;
CORY, S ;
PALMITER, RD ;
BRINSTER, RL .
NATURE, 1985, 318 (6046) :533-538
[2]   Transcriptional regulation and transformation by MYC proteins [J].
Adhikary, S ;
Eilers, M .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2005, 6 (08) :635-645
[3]   Immunological memory and protective immunity: Understanding their relation [J].
Ahmed, R ;
Gray, D .
SCIENCE, 1996, 272 (5258) :54-60
[4]   Suppressors of cytokine signalling (SOCS) in the immune system [J].
Alexander, WS .
NATURE REVIEWS IMMUNOLOGY, 2002, 2 (06) :410-416
[5]  
Amati B., 1998, FRONT BIOSCI, V3, pd250, DOI DOI 10.2741/A239
[6]   Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells [J].
Becker, TC ;
Wherry, EJ ;
Boone, D ;
Murali-Krishna, K ;
Antia, R ;
Ma, A ;
Ahmed, R .
JOURNAL OF EXPERIMENTAL MEDICINE, 2002, 195 (12) :1541-1548
[7]   IL-15 promotes the survival of naive and memory phenotype CD8+ T cells [J].
Berard, M ;
Brandt, K ;
Paus, SB ;
Tough, DF .
JOURNAL OF IMMUNOLOGY, 2003, 170 (10) :5018-5026
[8]  
BUDD RC, 1987, J IMMUNOL, V138, P3120
[9]   Coordinate expression and trans presentation of interleukin (IL)-15Rα and IL-15 supports natural killer cell and memory CD8+ T cell homeostasis [J].
Burkett, PR ;
Koka, R ;
Chien, M ;
Chai, S ;
Boone, DL ;
Ma, A .
JOURNAL OF EXPERIMENTAL MEDICINE, 2004, 200 (07) :825-834
[10]   INTERLEUKIN (IL)-15 IS A NOVEL CYTOKINE THAT ACTIVATES HUMAN NATURAL-KILLER-CELLS VIA COMPONENTS OF THE IL-2 RECEPTOR [J].
CARSON, WE ;
GIRI, JG ;
LINDEMANN, MJ ;
LINETT, ML ;
AHDIEH, M ;
PAXTON, R ;
ANDERSON, D ;
EISENMANN, J ;
GRABSTEIN, K ;
CALIGIURI, MA .
JOURNAL OF EXPERIMENTAL MEDICINE, 1994, 180 (04) :1395-1403