Model-based Thermal Anomaly Detection in Cloud Datacenters

被引:8
|
作者
Lee, Eun Kyung [1 ]
Viswanathan, Hariharasudhan [1 ]
Pompili, Dario [1 ]
机构
[1] Rutgers State Univ, Dept Elect & Comp Engn, NSF Cloud & Auton Comp Ctr, New Brunswick, NJ 08903 USA
来源
2013 9TH IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING IN SENSOR SYSTEMS (IEEE DCOSS 2013) | 2013年
关键词
Anomaly detection; heat imbalance; virtualization; MANAGEMENT;
D O I
10.1109/DCOSS.2013.8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The growing importance, large scale, and high server density of high-performance computing datacenters make them prone to strategic attacks, misconfigurations, and failures (cooling as well as computing infrastructure). Such unexpected events lead to thermal anomalies - hotspots, fugues, and coldspots - which significantly impact the total cost of operation of datacenters. A model-based thermal anomaly detection mechanism, which compares expected (obtained using heat generation and extraction models) and observed thermal maps (obtained using thermal cameras) of datacenters is proposed. In addition, a Thermal Anomaly-aware Resource Allocation (TARA) scheme is designed to create time-varying thermal fingerprints of the datacenter so to maximize the accuracy and minimize the latency of the aforementioned model-based detection. TARA significantly improves the performance of model-based anomaly detection compared to state-of-the-art resource allocation schemes.
引用
收藏
页码:191 / 198
页数:8
相关论文
共 50 条
  • [1] Model-Based Thermal Anomaly Detection in Cloud Datacenters Using Thermal Imaging
    Lee, Eun Kyung
    Viswanathan, Hariharasudhan
    Pompili, Dario
    IEEE TRANSACTIONS ON CLOUD COMPUTING, 2018, 6 (02) : 330 - 343
  • [2] Adversarial Impact on Anomaly Detection in Cloud Datacenters
    Deka, Pratyush Kr.
    Bhuyan, Monowar H.
    Kadobayashi, Youki
    Elmroth, Erik
    2019 IEEE 24TH PACIFIC RIM INTERNATIONAL SYMPOSIUM ON DEPENDABLE COMPUTING (PRDC 2019), 2019, : 188 - 197
  • [3] PBAD: Perception-Based Anomaly Detection System for Cloud Datacenters
    Kim, Jiyeon
    Kim, Hyong S.
    2015 IEEE 8TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, 2015, : 678 - 685
  • [4] A Model-Based Approach to Anomaly Detection Trading Detection Time and False Alarm Rate
    Goncalves, Charles F.
    Menasche, Daniel S.
    Avritzer, Alberto
    Antunes, Nuno
    Vieira, Marco
    2020 MEDITERRANEAN COMMUNICATION AND COMPUTER NETWORKING CONFERENCE (MEDCOMNET), 2020,
  • [5] A Model-based Approach to Anomaly Detection in Software Architectures
    Lamba, Hemank
    Glazier, Thomas J.
    Schmerl, Bradley
    Camara, Javier
    Garlan, David
    Pfeffer, Jurgen
    SYMPOSIUM AND BOOTCAMP ON THE SCIENCE OF SECURITY, 2016, : 69 - 71
  • [6] Towards Model-Based Anomaly Detection in Network Communication Protocols
    Bieniasz, Jedrzej
    Sapiecha, Piotr
    Smolarczyk, Milosz
    Szczypiorski, Krzysztof
    2016 2ND INTERNATIONAL CONFERENCE ON FRONTIERS OF SIGNAL PROCESSING (ICFSP), 2015, : 126 - 130
  • [7] Model-based thermal anomaly detection for lithium-ion batteries using multiple-model residual generation
    Dong, Guangzhong
    Lin, Mingqiang
    JOURNAL OF ENERGY STORAGE, 2021, 40
  • [8] A Hidden Markov Model-Based Method for Virtual Machine Anomaly Detection
    Shi, Chaochen
    Yu, Jiangshan
    PROVABLE SECURITY, PROVSEC 2019, 2019, 11821 : 372 - 380
  • [9] Anomaly Transformer Ensemble Model for Cloud Data Anomaly Detection
    Sakong, Won
    Kwon, Jongyeop
    Min, Kyungha
    Wang, Suyeon
    Kim, Wooju
    IEEE TRANSACTIONS ON CLOUD COMPUTING, 2024, 12 (04) : 1305 - 1313
  • [10] MODEL-BASED TEMPERATURE NOISE MONITORING METHODS FOR LMFBR CORE ANOMALY DETECTION
    TAMAOKI, T
    SONODA, Y
    SATO, M
    TAKAHASHI, R
    JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 1994, 31 (03) : 189 - 203