New Constructions of Subspace Codes Using Subsets of MRD Codes in Several Blocks

被引:30
作者
Chen, Hao [1 ,2 ]
He, Xianmang [3 ]
Weng, Jian [1 ,2 ]
Xu, Liqing [1 ,2 ]
机构
[1] Jinan Univ, Coll Informat Sci & Technol, Guangzhou 510632, Peoples R China
[2] Jinan Univ, Coll Cyber Secur, Guangzhou 510632, Peoples R China
[3] Dongguan Univ Technol, Sch Network Secur, Dongguan 523808, Peoples R China
关键词
Constant dimension subspace code; MRD code; q-polynmial; ERROR-CORRECTING CODES;
D O I
10.1109/TIT.2020.2975776
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A basic problem for the constant dimension subspace coding is to determine the maximal possible size A(q)(n, d, k) of a set of k-dimensional subspaces in F-q(n) such that the subspace distance satisfies d(U, V) = 2k - 2dim (U boolean AND V) >= d for any two different subspaces U and V in this set. We present two new constructions of constant dimension subspace codes using subsets of maximum rank-distance (MRD) codes in several blocks. This method is firstly applied to the linkage construction and secondly to arbitrary number of blocks of lifting MRD codes. In these two constructions, subsets of MRD codes with bounded ranks play an essential role. The Delsarte theorem about the rank distribution of MRD codes is an important ingredient to count codewords in our constructed constant dimension subspace codes. We give many new lower bounds for A(q)(n, d, k). More than 110 new constant dimension subspace codes better than previously best known codes are constructed
引用
收藏
页码:5317 / 5321
页数:5
相关论文
共 24 条
[1]  
Braun M., 2013, J COMBINAT DESIGNS, V22, P306
[2]   EXISTENCE OF q-ANALOGS OF STEINER SYSTEMS [J].
Braun, Michael ;
Etzion, Tuvi ;
Oestergard, Patric R. J. ;
Vardy, Alexander ;
Wassermann, Alfred .
FORUM OF MATHEMATICS PI, 2016, 4
[3]  
Chen H., 2019, 2019 IEEE INT C REAL
[4]  
de la Cruz J., 2015, ARXIV151001008
[6]   Optimal Ferrers Diagram Rank-Metric Codes [J].
Etzion, Tuvi ;
Gorla, Elisa ;
Ravagnani, Alberto ;
Wachter-Zeh, Antonia .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (04) :1616-1630
[7]   Codes and Designs Related to Lifted MRD Codes [J].
Etzion, Tuvi ;
Silberstein, Natalia .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (02) :1004-1017
[8]   Error-Correcting Codes in Projective Space [J].
Etzion, Tuvi ;
Vardy, Alexander .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (02) :1165-1173
[9]   Error-Correcting Codes in Projective Spaces Via Rank-Metric Codes and Ferrers Diagrams [J].
Etzion, Tuvi ;
Silberstein, Natalia .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (07) :2909-2919
[10]  
Gabidulin E. M., 1985, Problems of Information Transmission, V21, P1