Targeted Gastrointestinal Delivery of Nutraceuticals with Polysaccharide-Based Coatings

被引:16
|
作者
Sampathkumar, Kaarunya [1 ]
Loo, Say Chye Joachim [1 ,2 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Nanyang Technol Univ, SCELSE, 60 Nanyang Dr, Singapore 637551, Singapore
关键词
bioavailability; chitosan; delivery systems; encapsulation; nanoparticles; WITHANIA-COAGULANS; RESISTANT STARCH; CHITOSAN; DRUG; NANOPARTICLES; ACID);
D O I
10.1002/mabi.201700363
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Oral delivery is one of the facile methods for the administration of active ingredients (AIs) like nutraceuticals and drugs. However, its intrinsic disadvantages include poor absorption and bioavailability, degradation of the AI during transit through the gastrointestinal tract (GIT), and a lack of action specificity. Hence, a delivery system for targeted gastrointestinal delivery of AI using polysaccharide-based polymers, that are generally recognized as safe and approved for use as a direct food additive, is proposed. In this regard, mucoadhesive chitosan nanoparticles that could adhere to the mucosa of the GIT are fabricated and encapsulated with AI. These particles are subsequently coated with polysaccharides that have different enzymatic susceptibilities, to allow for specific degradation in the small or large intestines. It is observed that the polysaccharide coating efficiently retarded the nonspecific release of the encapsulated agent until it is exposed to its intended environment of release. The cytotoxicity and uptake of chitosan nanoparticles is further evaluated on Caco2 cells. In conclusion, these polysaccharide-coated nanoparticles can potentially be targeted to different organs in the GIT and to be taken up by the enterocytes for improved oral bioavailability.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Polysaccharide-based nanocarriers for efficient transvascular drug delivery
    Zhang, Min
    Ma, He
    Wang, Xijie
    Yu, Bing
    Cong, Hailin
    Shen, Youqing
    JOURNAL OF CONTROLLED RELEASE, 2023, 354 : 167 - 187
  • [22] Polysaccharide-based responsive nanogels for controlled drug delivery
    Auzely-Velty, Rachel
    Jing, Jing
    Hachet, Emilie
    Alaimo, David
    De Vlieghere, Elly
    Szarpak, Anna
    Jerome, Christine
    De Geest, Bruno
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [23] Polysaccharide-based systems in drug and gene delivery Preface
    Wang, Yanming
    Wang, Peng George
    ADVANCED DRUG DELIVERY REVIEWS, 2013, 65 (09) : 1121 - 1122
  • [24] Polysaccharide-Based Nanomaterials for Ocular Drug Delivery: A Perspective
    Yu, Haozhe
    Wu, Wenyu
    Lin, Xiang
    Feng, Yun
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [25] Recent Reports on Polysaccharide-Based Materials for Drug Delivery
    Kurczewska, Joanna
    POLYMERS, 2022, 14 (19)
  • [26] Application of Polysaccharide-Based Hydrogels as Probiotic Delivery Systems
    Kwiecien, Iwona
    Kwiecien, Michal
    GELS, 2018, 4 (02)
  • [27] Complex Polysaccharide-Based Nanocomposites for Oral Insulin Delivery
    Collado-Gonzalez, Mar
    Ferreri, Maria Cristina
    Freitas, Alessandra R.
    Santos, Ana Claudia
    Ferreira, Nuno R.
    Carissimi, Guzman
    Sequeira, Joana A. D.
    Diaz Banos, E. Guillermo
    Villora, Gloria
    Veiga, Francisco
    Ribeiro, Antonio
    MARINE DRUGS, 2020, 18 (01)
  • [28] Polysaccharide-Based Drug Delivery Systems for the Treatment of Periodontitis
    Baranov, Nicolae
    Popa, Marcel
    Atanase, Leonard Ionut
    Ichim, Daniela Luminita
    MOLECULES, 2021, 26 (09):
  • [29] Polysaccharide-based aerogel microspheres for oral drug delivery
    Garcia-Gonzalez, C. A.
    Jin, M.
    Gerth, J.
    Alvarez-Lorenzo, C.
    Smirnova, I.
    CARBOHYDRATE POLYMERS, 2015, 117 : 797 - 806
  • [30] Classification and design strategies of polysaccharide-based nano-nutrient delivery systems for enhanced bioactivity and targeted delivery: A review
    Wang, Zhili
    Fu, Shiyao
    Guo, Yong
    Han, Ying
    Ma, Chao
    Li, Ruiling
    Yang, Xin
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 256