Performance Analysis of Pressure-retarded Osmosis Power Using Biomimetic Aquaporin Membrane

被引:2
|
作者
Choi, Wook [2 ,3 ]
Bae, Harim [1 ,4 ]
Lee, Hyung-Keun [2 ]
Lee, Jonghwi [4 ]
Kim, Jong Hak [3 ]
Park, Chul Ho [1 ]
机构
[1] KIER, JGRC, Gujwa Eup 695971, Jeju Specific S, South Korea
[2] KIER, Greenhouse Gas Res Ctr, Taejon 305343, South Korea
[3] Yonsei Univ, Dept Chem & Biomol Engn, Seoul 120749, South Korea
[4] Chung Ang Univ, Dept Chem Engn & Mat Sci, Seoul 156756, South Korea
关键词
pressure-retarded osmosis; aquaporin membrane; salinity gradient power;
D O I
10.7317/pk.2015.39.2.317
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Salinity gradient power is a system which sustainably generates electricity for 24 hrs, if the system is constructed at a certain place where both seawater and river water are consistently pumped. Since power is critically determined by the water flux and the salt rejection, a membrane of water-semipermeable aquaporin protein in cell membranes was studied for pressure-retarded osmosis. NaCl was used as a salt, and NaNO3 was used as a candidate to check the ion selectivity. The water flux of biomimetic aquaporin membranes was negligible at a concentration below 2 M. Also, there is no remarkable dependence of water flux and ion selectivity on concentrations higher than 3 M. Therefore, the biomimetic aquaporin membrane could not be applied into pressure-retarded osmosis; however, if a membrane could overcome the current limitations, the properties shown by natural cells could be accomplished.
引用
收藏
页码:317 / 322
页数:6
相关论文
共 50 条
  • [21] Economic framework for net power density and levelized cost of electricity in pressure-retarded osmosis
    Chung, Hyung Won
    Swaminathan, Jaichander
    Banchik, Leonardo D.
    Lienhard, John H.
    DESALINATION, 2018, 448 : 13 - 20
  • [22] Predicting the performance of spiral-wound membranes in pressure-retarded osmosis processes
    Matta, Saly M.
    Selam, Muaz A.
    Manzoor, Husnain
    Adham, Samer
    Shon, Ho Kyong
    Castier, Marcelo
    Abdel-Wahab, Ahmed
    RENEWABLE ENERGY, 2022, 189 : 66 - 77
  • [23] Pressure-Retarded Osmotic Power for Remote Communities in Quebec
    Maisonneuve, Jonathan
    Pillay, Pragasen
    2014 IEEE PES GENERAL MEETING - CONFERENCE & EXPOSITION, 2014,
  • [24] Overview of pressure-retarded osmosis (PRO) process and hybrid application to sea water reverse osmosis process
    Kim, Jihye
    Lee, Jijung
    Kim, Joon Ha
    DESALINATION AND WATER TREATMENT, 2012, 43 (1-3) : 193 - 200
  • [25] Modelling and economic evaluation of pressure-retarded osmosis power plant case study: Iran
    Ansari, Abolfazi
    Abbaspour, Majid
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2019, 40 (01) : 69 - 81
  • [26] Feasibility of Pressure-Retarded Osmosis for Electricity Generation at Low Temperatures
    Abbasi-Garravand, Elham
    Mulligan, Catherine N.
    MEMBRANES, 2021, 11 (08)
  • [27] Effects of annealing on the microstructure and performance of cellulose acetate membranes for pressure-retarded osmosis processes
    Su, Jincai
    Zhang, Sui
    Chen, Hangzheng
    Chen, Hongmin
    Jean, Y. C.
    Chung, Tai-Shung
    JOURNAL OF MEMBRANE SCIENCE, 2010, 364 (1-2) : 344 - 353
  • [28] Pressure retarded osmosis for power generation and seawater desalination: Performance analysis
    Altaee, Ali
    Zaragoza, Guillermo
    Sharif, Adel
    DESALINATION, 2014, 344 : 108 - 115
  • [29] Analysis of model parameters for the prediction of mass transfer resistance for forward osmosis and pressure-retarded osmosis configurations
    Ettouney, Hisham
    Aldaihani, Reem
    DESALINATION, 2020, 493
  • [30] Concentration and Temperature Effects on Water and Salt Permeabilities in Osmosis and Implications in Pressure-Retarded Osmosis
    Sivertsen, Edvard
    Holt, Torleif
    Thelin, Willy R.
    MEMBRANES, 2018, 8 (03)